Amphibians as an experimental model for the study of the evolution of spatial cognition and its neural bases.

dc.creatorMuzio, Rubén N.
dc.creatorDaneri, M. Florencia
dc.creatorSotelo., María Inés
dc.date2019-10-16
dc.date.accessioned2020-02-18T13:38:30Z
dc.date.available2020-02-18T13:38:30Z
dc.descriptionAmphibians are a phylogenetically very old group that is characterized by being the representatives of the transition from the aquatic to terrestrial environment, with all the implications that this could have on the organization of its nervous system. The use of this animal model to study the evolution of spatial cognition, offers the additional advantage, by not having neocortex, of being able to inquire about the basic brain circuits that underlie this kind of behavior. This paper describes the several procedures and experimental devices that are used for the study of spatial navigational and orientation abilities in amphibians and its neural bases. Taking into account all the information accumulated so far in this experimental model, it is concluded that the properties of this cognitive ability have been largely conserved throughout evolution.en-US
dc.descriptionLos anfibios constituyen un grupo filogenéticamente muy antiguo que se caracteriza por ser los representantes de la transición del medio acuático al terrestre, con todas las implicancias que esto pudo tener en la organización de su sistema nervioso. El uso de este modelo animal para estudiar la evolución de la cognición espacial, brinda la ventaja adicional, al no poseer neocorteza, de poder indagar acerca de los circuitos cerebrales básicos que subyacen a este tipo de conducta. En este trabajo se describen los distintos procedimientos y dispositivos experimentales que se utilizan para el estudio de las habilidades de orientación y navegación espacial en anfibios y sus bases neurales. Teniendo en cuenta toda la información acumulada hasta el momento en este modelo experimental se concluye que las propiedades de esta habilidad cognitiva han sido mayormente conservadas a lo largo de la evolución.es-ES
dc.formatapplication/pdf
dc.identifierhttps://revistas.libertadores.edu.co/index.php/TesisPsicologica/article/view/924
dc.identifier.urihttp://hdl.handle.net/11371/2462
dc.languagespa
dc.publisherFundación Universitaria Los Libertadoreses-ES
dc.relationhttps://revistas.libertadores.edu.co/index.php/TesisPsicologica/article/view/924/894
dc.relation/*ref*/Ball, G. F., & Gentner, T. Q. (1998). They're playing our song: gene expression and birdsong perception. Neuron, 21, 271-274. Bingman, V. P., & Muzio, R. N. (2017). Reflections on the Structural-Functional Evolution of the Hippocampus: What is the Big Deal about a Dentate Gyrus? 2 Tesis Psicológica vol. 13- nº2 julio-diciembre/18 pp. 1-27 ISSN 1909-8391 Brain, Behavior and Evolution, 90, 53-61. Bingman, V. P., Erichsen, J. T., Anderson, J. D., Good, M. A., & Pearce, J. M. (2006). Spared feature-structure discrimination but diminished salience of environmental geometry in hippocampal lesioned homing pigeons (Columba livia). Behavioral Neuroscience, 120, 835-841. Bingman, V. P., Rodríguez, F., & Salas, C. (2017). The hippocampus in nonmammalian vertebrates. En: Kaas J (ed). Evolution of Nervous Systems. Oxford, Academic Press, pp 479-489. Brattstrom, B. H. (1990). Maze learning in the fire‐bellied toad, Bombina orientalis. Journal of Herpetology, 24 (1), 44-47. Brown, A. A., Spetch, M. L., & Hurd, P. L. (2007). Growing in circles: Rearing environment alters spatial navigation in fish. Psychological Science, 18, 569-573. Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23, 149-178. Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review, 12, 1-23. Cheng, K., Huttenlocher, J., & Newcombe, N. S. (2013). 25 years on research on the use of geometry in spatial orientation: a current theoretical perspective. Psychonomic Bulletin and Review, 20, 1033-1054. Clayton, D. F. (1997). Role of gene regulation in song circuit development and song learning. Journal of Neurobiology, 33, 549-571. Daneri, M. F., & Muzio, R. N. (2013). El aprendizaje espacial y su relevancia en anfibios. Revista Argentina de Ciencias del Comportamiento, 5(3), 38-49. Daneri, M. F., Casanave, E. B., & Muzio, R. N. (2011). Control of spatial orientation in terrestrial toads (Rhinella arenarum). Journal of Comparative Psychology, 125(3), 296-307. Daneri, M. F., Casanave, E. B., & Muzio, R. N. (2015). Use of local visual landmarks for spatial orientation in toads (Rhinella arenarum): The role of distance to a goal. Journal of Comparative Psychology, 129(3), 247-255. González, A., López, J. M., Morona, R., & Moreno, N. (2017). The organization of the amphibian central nervous system. En; Evolution of the nervous systems. 2nd Ed. Elsevier. 3 Tesis Psicológica vol. 13- nº2 julio-diciembre/18 pp. 1-27 ISSN 1909-8391 Greding, E. J. (1971). Comparative rates of learning in frogs (Ranidae) and toads (Bufonidae). Caribbean Journal of Science, 11 (3-4), 203-208. Grobéty, M. C., & Schenk, F. (1992). Spatial learning in a three-dimensional maze. Animal Behaviour, 43, 1011-1020. Hayman, R., Verriotis, M. A., Jovalekic, A., Fenton, A. A., & Jeffery, K. J. (2011). Anisotropic encoding of three-dimensional space by place cells and grid cells. Nature Neuroscience, 14, 1182-1188. Holbrook, R., & Burt de Perera, T. (2009). Separate encoding of vertical and horizontal components of space during orientation in fish. Animal Behaviour, 78, 241-245. Holmes, C. A., Nardi, D., Newcombe, N. S., & Weisberg, S. M. (2015). Children’s use of slope to guide navigation: Sex differences relate to spontaneous slope perception. Spatial Cognition and Computation, 15, 170-185. Ingle, D., & Sahagian, D. (1973). Solution of a spatial constancy problem by goldfish. Physiological Psychology, 1, 83-84. Kesner, R. P., Bolland, B. L., & Davis, M. (1993). Memory of spatial location, motor responses and objects: Triple dissociation among the hippocampus, caudate nucleus and extrastriate visual cortex. Experimental Brain Research, 93, 462-470. Lee, S. A., Sovrano, V. A., & Spelke, E. S. (2012). Navigation as a source of geometric knowledge: Young children’s use of length, angle, distance, and direction in a reorientation task. Cognition, 123, 144-161. López, J. C., Broglio, C, Rodríguez, F, Thinus‐Blanc, C., & Salas, C. (1999). Multiple spatial learning strategies in golfish (Carassius auratus). Animal Cognition, 2, 109‐120. Mayer, U., & Bischof, H. J. (2012). Brain activation pattern depends on the strategy chosen by zebra finches to solve an orientation task. Journal of Experimental Biology, 215, 426-434. Mayer, U., Pecchia, T., Bingman, V. P., Flore, M., & Vallortigara, G. (2016). Hippocampus and medial striatum dissociation during goal navigation by geometry or features in the domestic chick: an immediate early gene study. Hippocampus, 26, 27-40. Moreno, N., & González, A. (2004). Localization and Connectivity of the Lateral Amygdala in Anuran Amphibians. The Journal of Comparative Neurology, 479, 130-148. 4 Tesis Psicológica vol. 13- nº2 julio-diciembre/18 pp. 1-27 ISSN 1909-8391 Muzio, R. N. (1999). Aprendizaje instrumental en anfibios. Revista Latinoamericana de Psicología, 31(1), 35-47. Muzio, R. N. (2013). Aprendizaje en anfibios, el eslabón perdido: Un modelo simple cerebral en el estudio de conductas complejas. Cuadernos de Herpetología, 27(2), 87-100. Muzio, R. N., Daneri, M. F., & Sotelo, M. I. (2018). Aprendizaje y Memoria Espacial en Anfibios. En; Estudios en Cognición Comparada (Cap. 4). Ed. Qartuppi, Facultad de Psicología, Universidad Nacional Autónoma de México, México D.F. En prensa. Nardi, D., & Bingman, V. P. (2009). Pigeon (Columba livia) encoding of a goal location: The relative importance of shape geometry and slope information. Journal of Comparative Psychology, 123, 204-216. Nardi, D., Funk, A. Y., Newcombe, N. S., & Shipley, T. F. (2009). Reorientation by slope cues in humans. Cognitive Processing, 10, 260-262. Neary, T. J. (1988). Forebrain auditory pathways in ranid frogs. En: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, and Walkowiak W (eds). The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 233-252. Northcutt, R. G., & Ronan, M. (1992). Afferent and efferent connections of the bullfrog medial pallium. Brain, Behavior and Evolution, 40, 1-16. Northcutt, R. G., & Kicliter, E. (1980). Organization of the amphibian telencephalon. En: Comparative neurology of the telencephalon (S. O. E. Ebbesson, ed.), pp. 203-255. Plenum: New York. Ocaña, F. M., Uceda, S., & Rodríguez, F. (2017). Dynamics of Goldfish subregional Hippocampal Pallium activity throughout spatial memory formation. Brain, Behavior and Evolution, 90, 154-170. O´Keefe, J., & Nadel, L. (1978). The Hippocampus as a Cognitive map. Clarendon Press: Oxford. Packard, M. G., & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65, 65-72. Packard, M. G., Hirsh, R., & White, N. M. (1989). Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. Journal of Neuroscience, 9, 1465-1472. 5 Tesis Psicológica vol. 13- nº2 julio-diciembre/18 pp. 1-27 ISSN 1909-8391 Pearce, J. M., Good, M. A., Jones, P. M., & McGregor, A. (2004). Transfer of spatial behavior between different environments: Implications for theories of spatial learning and for the role of the hippocampus in spatial learning. Journal of Experimental Psychology: Animal Behavior Processes, 30(2), 135-147. Pearce, J. M., Graham, M., Good, M. A., Jones, P. M., & McGregor, A. (2006). Potentiation, overshadowing, and blocking of spatial learning based on the shape of the environment. Journal of Experimental Psychology: Animal Behavior Processes, 32(3), 201-214. Puddington, M. M., & Muzio, R. N. (2016). Relación entre conducta y activación de áreas cerebrales. Empleo de la técnica de AgNOR en psicología comparada. Interdisciplinaria, 33(1), 1-13. Puddington, M. M., Daneri, M. F., Papini, M. R., & Muzio, R. N. (2016). Telencephalic Neural activation after passive avoidance learning in the terrestrial toad Rhinella arenarum. Behavioural Brain Research, 315, 75-82. Rescorla, R. A., & Wagner, A. R. (1972). A theory of pavlovian conditioning: Variations in the effectiveness of reinforcment and nonreinforcement. En: A. H. Black & W. F. Prokasy (Eds.). Classical conditioning II: Current theory and research (pp. 64-99). New York: Appleton-Century-Crofts. Roden, K., Endepols, H., & Walkowiak, W. (2005). Hodological characterization of the septum in anuran amphibians: I. Afferent connections. Journal of Comparative Neurology, 483, 415-436. Salas, C., Broglio, C., & Rodríguez, F. (2003). Evolution of forebrain and spatial cognition in vertebrates: Conservation across diversity. Brain, Behavior and Evolution, 62, 72‐82. Shimizu, T., Bowers, A. N., Budzynski, C. A., Kahn, M.C., & Bingman, V. P. (2004). What does a pigeon (Columba livia) brain look like during homing? Selective examination of ZENK expression. Behavioral Neuroscience, 118, 845-851. Sotelo, M. I., & Muzio, R. N. (2015). Aprendizaje Espacial y Geometría. Los Anfibios en la Evolución de los Sistemas Cognitivos Cerebrales. Revista Argentina de Ciencias del Comportamiento, 7(3), 64-78. Sotelo, M. I., Bingman, V. P., & Muzio, R. N. (2015). Goal orientation by geometric and feature cues: spatial learning in the terrestrial toad Rhinella arenarum. Animal Cognition, 18(1), 315-323. 6 Tesis Psicológica vol. 13- nº2 julio-diciembre/18 pp. 1-27 ISSN 1909-8391 Sotelo, M. I., Bingman, V. P., & Muzio, R. N. (2017). Slope-based and geometric encoding of a goal location by the terrestrial toad (Rhinella arenarum). Journal of Comparative Psychology, 131(4), 362-369. Sotelo, M. I., Bingman, V. P., & Muzio, R. N. Transfer of spatial learning between geometrically different shaped environments in the terrestrial toad, Rhinella arenarum. Enviado para su publicación en el Journal of Experimental Psychology: Animal Learning and Cognition. Sotelo, M. I., Daneri, M. F., Bingman, V. P., & Muzio, R. N. (2016). Telencephalic neuronal activation associated with spatial memory in the terrestrial toad, Rhinella arenarum: Participation of the medial pallium in navigation by geometry. Brain, Behavior and Evolution, 88, 149-160. Spelke, E. S., Lee, S. A., & Izard, V. (2010). Beyond core knowledge: Natural geometry. Cognitive Science, 34, 863-884. Sutton, J. E. (2009). What is geometric information and how do animals use it? Behavioural Processes, 80, 339-343. Tommasi, L., Chiandetti, C., Pecchia, T., Sovrano, V. A., & Vallortigara, G. (2012). From natural geometry to spatial cognition. Neuroscience and Biobehavioral Reviews, 36, 799-824. Tommasi, L., Gagliardo, A., Andrew, R. J., & Vallortigara, G. (2003). Separate processing mechanisms for encoding of geometric and landmark information in the avian hippocampus. European Journal of Neuroscience, 17, 1695-1702. Trere, D. (2000). AgNOR staining and quantification. Micron, 31(2), 127-131. Twyman, A. D., Newcombe, N. S., & Gould, T. G. (2012). Malleability in the development of spatial reorientation. Developmental Psychobiology, 3, 243-255. Vargas, J. P., Bingman, V. P., Portavella, M., & López, J. C. (2006). Telencephalon and geometric space in goldfish. European Journal of Neuroscience, 24, 2870-2878. Vargas, J. P., López, J. C., Salas, C., & Thinus-Blanc, C. (2004). Encoding of geometrical and featural spatial information by goldfish (Carassius auratus). Journal of Comparative Psychology, 118, 206-216. Velázquez, F. N., Prucca, C. G., Etienne, O., D’Astolofo, D. S., Silvestre, D. C., Boussin, F. D., & Caputto, B. L. (2015). Brain development is impaired in c-Fos -/- mice. Oncotarget, 6, 16883-16901. Wells, K. D. (1977). The social behavior of anuran amphibians. Animal Behaviour, 25, 7 Tesis Psicológica vol. 13- nº2 julio-diciembre/18 pp. 1-27 ISSN 1909-8391 666-693. Wilczynski, W. W., & Capranica, R. R. (1984). The auditory system of anuran amphibians. Progress in Neurobiology, 22, 1-38 Wilczynski W., & Endepols H. (2007). Central Auditory Pathways in Anuran Amphibians: The Anatomical Basis of Hearing and Sound Communication. En: Narins P.M., Feng A.S., Fay R.R., Popper A.N. (eds). Hearing and Sound Communication in Amphibians. Springer Handbook of Auditory Research, vol 28. Springer, New York, NY. Wilczynski, W. W., Zakon, H. H., & Brenowitz, E. A. (1984). Acoustic communication in spring peepers. Call
dc.rightsDerechos de autor 2019 Tesis Psicológicaes-ES
dc.sourceTesis Psicológica; Vol. 13 Núm. 2 (2018): Cognición Comparada; 1-27es-ES
dc.source2422-0450
dc.source1909-8391
dc.titleAmphibians as an experimental model for the study of the evolution of spatial cognition and its neural bases.en-US
dc.titleLos anfibios como modelo experimental para el estudio de la evolución de la cognición espacial y sus bases neurales.es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
Archivos