# ANÁLISIS Y DISEÑO ESTRUCTURAL DE FLOTADORES TIPO CATAMARÁN APLICADO A LA AERONAVE PIPER PA-18

# JULIÁN FELIPE CARVAJAL HURTADO ROBERTO ALEJANDRO NIÑO BETANCOURT

FUNDACION UNIVERSITARIA LOS LIBERTADORES FACULTAD DE INGENIERIAS PROGRAMA DE INGENIERIA AERONAUTICA BOGOTA, D.C. 2006

# ANÁLISIS Y DISEÑO ESTRUCTURAL DE FLOTADORES TIPO CATAMARÁN APLICADO A LA AERONAVE PIPER PA-18

# JULIÁN FELIPE CARVAJAL HURTADO ROBERTO ALEJANDRO NIÑO BETANCOURT

# MONOGRAFIA PARA OPTAR AL TITULO DE INGENIERO AERONAUTICO

# DIRECTOR: ANDREAS GRAVENHOST INGENIERO MECÁNICO Y AEROESPACIAL

FUNDACION UNIVERSITARIA LOS LIBERTADORES FACULTAD DE INGENIERIAS PROGRAMA DE INGENIERIA AERONAUTICA BOGOTA, D.C. 2006

NOTA DE ACEPTACIÓN

Firma del Presidente del Jurado

Firma del Jurado

Firma del Jurado

BOGOTA D.C., AGOSTO 24 DE 2006

A Dios por permitirme la sabiduría, dedicación y esfuerzo, con mucho amor a mis padres por su apoyo incondicional, en especial a Glorita por la sonrisa que me brinda cada vez que llego a casa, a mis abuelos, a mis hermanos, a mis sobrinos y demás familiares.

## ROBERTO A. NIÑÓ BETANCOURT

A Dios por permitirme la sabiduría, el esfuerzo y la vida para concluir este trabajo de grado, a Dios, a mis padres, a mis hermanos, a mi abuela, a mis tíos, con mucho cariño a Juliana Sofía.

## JULIAN F. CARVAJAL HURTADO

#### AGRADECIMEINTOS

A través del desarrollo de este trabajo de Grado surgieron muchos problemas e interrogantes, los cuales fueron despejados gracias al conocimiento de ciertas personas y al esfuerzo personal. Los autores hacen un reconocimiento a todas las personas que de una u otra forma fueron una guía para que este trabajo de grado fuera posible.

Agradecemos a Andreas Gravenhorst por haber sido el director de este trabajo de grado, por el conocimiento y experiencia que aporto al mismo, a Jorge Canal por sus valiosos comentarios, sugerencias y explicaciones en las consideraciones que se deben tener en cuenta en el análisis estructural de flotadores, a el ingeniero Ferrer García por su amabilidad y colaboración en cuanto a información técnica de la aeronave Piper PA-18, a Jorge Cruz y Nelson Correa por la instrucción que se recibió en el manejo de los programas Solid Edge y Algor respectivamente, a los profesores de la universidad los libertadores por su noble labor, a los autores de las fuentes consultadas por los conocimientos que nos brindaron.

Julián Felipe Carvajal agradece de manera especial a sus padres Liliana y Bernardo, a hermanos Sandra, Iván y Marcela, a tíos, especialmente a José Luís por su apoyo incondicional, por la amistad y amabilidad brindada durante toda la vida, a la abuela Oliva, a Jenny y Familia, y a compañeros de Universidad.

Por su parte, Roberto Niño agradece a la abuela Angelina, a sus padres Roberto y Gloria por su gran apoyo y comprensión, a Andrea Rodriguez, David Muñoz y a sus compañeros de clase por ser una mano amiga en los momentos más difíciles a través de esta etapa universitaria.

# CONTENIDO

| INTRODUCCION                                      | 34 |
|---------------------------------------------------|----|
| 1. HIDROAVIONES, FLOTADORES Y FUNDAMENTOS FÍSICOS | 36 |
| 1.1 DEFINICIÓN Y TIPOS DE HIDROAVIONES            | 36 |
| 1.1.1 Hidroavión con flotador central             | 37 |
| 1.1.2 Hidroavión con doble flotador               | 38 |
| 1.1.3 Canoa voladora                              | 38 |
| 1.1.4 Anfibio                                     | 39 |
| 1.2 DEFINICIÓN Y TIPOS DE FLOTADORES              | 40 |
| 1.2.1 Forma de hidroplano                         | 40 |
| 1.2.2 Catamarán                                   | 40 |
| 1.2.3 Flotadores de persianas o de aletas         | 41 |
| 1.2.4 Forma canoa                                 | 41 |
| 1.3 FUNDAMENTOS FÍSICOS                           | 41 |

| 1.3.1 Fluido                                 | 41 |
|----------------------------------------------|----|
| 1.3.2 Fluido incompresible                   | 42 |
| 1.3.3 Fluido compresible                     | 42 |
| 1.3.4 Densidad                               | 42 |
| 1.3.5 Peso específico                        | 42 |
| 1.3.6 Presión                                | 42 |
| 1.3.7 Viscosidad                             | 43 |
| 1.3.8 Principio de Arquímedes                | 43 |
| 1.3.9 Metacentro                             | 44 |
| 2. PARAMETROS DE DISEÑO                      | 46 |
| 2.1 FLOTABILIDAD Y ESTABILIDAD ESTATICA      | 46 |
| 2.1.1 Estabilidad lateral y longitudinal     | 47 |
| 2.2 RESISTENCIA Y SUSTENTACIÓN HIDRODINÁMICA | 51 |
| 2.3 SPRAY                                    | 52 |
| 2.4 ESTABILIDAD DINÁMICA SOBRE EL AGUA       | 56 |

| 2.5 MANIOBRABILIDAD Y CONTROL                                   | 57 |
|-----------------------------------------------------------------|----|
| 2.6 HABILIDAD PARA OPERAR EN CIERTOS ESTADOS MARITIMOS          | 58 |
| 3. ESPECIFICACIONES DE LA AERONAVE PIPER PA-18 -150             | 60 |
| 3.1 CALCULO DE PESOS TEORICOS DE OPERACIÓN                      | 61 |
| 3.2 CALCULO DE VELOCIDADES DE PERDIDA                           | 65 |
| 3.3 PESO Y BALANCE                                              | 67 |
| 4. DISEÑO DE FLOTADORES                                         | 74 |
| 4.1 DIMENSIONES DEL FLOTADOR                                    | 75 |
| 4.2 DETERMINACION DE LA LÍNEA DE AGUA ESTATICA                  | 84 |
| 4.3 ESTABILIDAD DIRECCIONAL DEL HIDROAVIÒN                      | 86 |
| 5. CARGAS DE AGUA                                               | 88 |
| 5.1 FACTORES DE CARGA EN EL FLOTADOR                            | 88 |
| 5.1.1 Caso de aterrizaje en el rediente                         | 89 |
| 5.1.2 Casos de aterrizaje de popa y proa                        | 89 |
| 5.2 ATERRIZAJES SIMETRICOS, ASIMETRICOS Y DISPOSICION DE CARGAS | 93 |

| 5.2.1 Aterrizajes simétricos                                  | 93  |
|---------------------------------------------------------------|-----|
| 5.2.2 Aterrizaje asimétrico en hidroaviones de flotador doble | 94  |
| 5.3 PRESIONES EN EL FONDO DEL FLOTADOR                        | 95  |
| 5.3.1 Presiones locales                                       | 95  |
| 5.3.2 Presiones distribuidas                                  | 97  |
| 6. ANÁLISIS ESTRUCTURAL                                       | 99  |
| 6.1 CONSIDERACIONES Y DEFINICIONES BÁSICAS EN                 |     |
| RESISITENCIA DE MATERIALES                                    | 100 |
| 6.1.1 Fractura                                                | 100 |
| 6.1.2 Deformación                                             | 100 |
| 6.1.3 Estabilidad y Pandeo                                    | 100 |
| 6.1.4 Concepto de esfuerzo                                    | 101 |
| 6.1.5 Esfuerzo normal directo                                 | 102 |
| 6.1.6 Esfuerzo cortante directo                               | 102 |
| 6.1.7 Concepto de deformación                                 | 105 |
| 6.1.8 Modulo de elasticidad                                   | 105 |

| 6.1.9 Momento de inercia                                                          | 105 |
|-----------------------------------------------------------------------------------|-----|
| 6.1.10 Tubos                                                                      | 106 |
| 6.1.11 Concepto de los elementos finitos                                          | 106 |
| 6.2 CALCULO DE LAS REACCIONES EN LOS PUNTOS<br>DE SUJECIÓN DEL FLOTADOR           | 109 |
| 6.2.1 Carga de agua de aterrizaje en la proa                                      | 110 |
| 6.2.2 Carga de agua de aterrizaje en el paso (CG)                                 | 115 |
| 6.2.3 Carga de agua de aterrizaje en la popa                                      | 119 |
| 6.2.4 Carga de agua de aterrizaje asimétrico                                      | 124 |
| 6.3 DISEÑO DE STRUTS                                                              | 128 |
| 6.3.1 Método de análisis de columnas                                              | 135 |
| 6.3.2 Selección del cable tensor                                                  | 141 |
| 6.4 DISEÑO DE TORNILERIA EN LAS UNIONES DE LOS SOPORTES<br>AL FLOTADOR Y FUSELAJE | 142 |
| 6.4.1 Tornillo del apoyo "A"                                                      | 143 |
| 6.4.2 Tornillo del apoyo "B"                                                      | 150 |

| 6.4.3 Tornillo del apoyo "C"                                                      | 157 |
|-----------------------------------------------------------------------------------|-----|
| 6.4.4 Tornillos del apoyo "D"                                                     | 163 |
| 6.5 DISEÑO DE TORNILLOS PASADORES EN LAS UNIONES<br>DE LOS FITTING A LOS SOPORTES | 180 |
| 6.5.1 Pasador del strut 1                                                         | 180 |
| 6.5.2 Pasador del strut 2                                                         | 184 |
| 6.5.3 Pasador del strut "3A y 3C"                                                 | 187 |
| 6.5.4 Pasador del strut "4C y 4B"                                                 | 190 |
| 6.5.5 Pasador del strut "5B y 5D"                                                 | 193 |
| 6.6 FLUJO DE CORTADURA                                                            | 197 |
| 6.7 DISEÑO DE FITTING                                                             | 206 |
| 6.7.1 Verificación de fitting                                                     | 211 |
| 6.8 ANALISIS DE ELEMENTOS DEL FLOTADOR POR MEDIO DE ALGOR                         | 215 |
| 6.8.1 Pieles inferiores                                                           | 215 |
| 6.8.2 Soportes                                                                    | 219 |
| 6.8.3 Refuerzos (stringers)                                                       | 223 |

| 6.8.4 Cuadernas                                   | 227 |
|---------------------------------------------------|-----|
| 7. PROTECCIÓN CONTRA LA CORROSIÓN EN HIDROAVIONES | 232 |
| 8. ANÁLISIS DE COSTOS                             | 234 |
| 9. CONCLUSIONES                                   | 235 |
| 10. RECOMENDACIONES                               | 237 |
| BIBLIOGRAFÍA                                      | 238 |
| ANEXOS                                            | 241 |

## LISTA DE CUADROS

| Cuadro 1. Desplazamiento del casco vs. Altura de la ola                     | 59 |
|-----------------------------------------------------------------------------|----|
| Cuadro 2. Características de la Aeronave Piper PA-18-150 Super Cub          | 60 |
| Cuadro 3. Calculo peso vacío Piper PA-18 con flotadores y struts instalados | 62 |
| Cuadro 4. Calculo peso mínimo de aterrizaje PIPER PA-18                     | 62 |
| Cuadro 5. Fracciones de peso promedio Piper PA-18                           | 70 |
| Cuadro 6. Pesos estimados Piper PA-18                                       | 71 |
| Cuadro 7. Reporte Peso y Balance Piper PA-18                                | 72 |
| Cuadro 8. Dimensiones cuadernas del flotador catamarán                      | 84 |
| Cuadro 9. Relación de distancia r <sub>x</sub>                              | 91 |
| Cuadro 10. Factores de reacción del agua n <sub>w</sub>                     | 92 |
| Cuadro 11. Factores de cargas de agua evaluadas a diferentes                | 02 |
| pesos de operación, Piper PA-18                                             | 93 |
| Cuadro 12. Cargas de aterrizaje simétrico más altas                         | 94 |

| Cuadro 13. Presiones en el Fondo del Flotador                                                             | 98  |
|-----------------------------------------------------------------------------------------------------------|-----|
| Cuadro 14. Reacciones en A y B para el caso de carga en proa                                              | 111 |
| Cuadro 15. Reacciones en A y B para el caso de carga en el paso (C.G)                                     | 116 |
| Cuadro 16. Reacciones en A y B para el caso de carga en popa                                              | 120 |
| Cuadro 17. Reacciones en A y B para el caso de carga asimétrica                                           | 125 |
| Cuadro 18. Reacciones para los puntos de apoyo de C y D                                                   | 129 |
| Cuadro 19. Esfuerzos y fuerzas axiales para el caso de aterrizaje en la proa                              | 131 |
| Cuadro 20. Esfuerzos y fuerzas axiales para el caso de aterrizaje en el paso (C.G.)                       | 132 |
| Cuadro 21. Esfuerzos y fuerzas axiales para el caso de aterrizaje en la popa                              | 133 |
| Cuadro 22. Esfuerzos y fuerzas axiales cargas asimétricas                                                 | 134 |
| Cuadro 23. Áreas calculadas y áreas estandarizadas con su respectivo factor de seguridad para cada strut. | 135 |
| Cuadro 24. Verificación de Struts por Pandeo                                                              | 140 |
| Cuadro 25. Cables de control                                                                              | 141 |
| Cuadro 26. Tornillos normalizados para los puntos de unión de los soportes al flotador y al fuselaje      | 179 |

| Cuadro 27. Flujo de cortadura para la cuaderna de 1/5 del forebody        | 199 |
|---------------------------------------------------------------------------|-----|
| Cuadro 28. Flujo de cortadura para la cuaderna ubicada debajo del CG      | 199 |
| Cuadro 29. Flujo de cortadura aplicado en la cuaderna maestra             | 200 |
| Cuadro 30. Flujo de cortadura para la cuaderna del 85% del afterbody      | 200 |
| Cuadro 31. Calculo del número de remaches                                 | 202 |
| Cuadro 32. Cargas últimas para el diseño de los fitting 3, 4, 5, 6, 7 y 8 | 212 |
| Cuadro 33. Verificación de fitting por corte, apoyo, desgarre y tensión   | 214 |

## LISTA DE FIGURAS

|                                                                                    | pág. |
|------------------------------------------------------------------------------------|------|
| Figura 1. Comparación entre hidroplano e hidroavión                                | 36   |
| Figura 2. Hidroavión con flotador central                                          | 37   |
| Figura 3. Hidroavión con doble flotador                                            | 38   |
| Figura 4. Canoa volante                                                            | 39   |
| Figura 5. Canoa volante anfibia                                                    | 39   |
| Figura 6. Anfibio de doble flotador                                                | 40   |
| Figura 7. Tipos de flotadores                                                      | 41   |
| Figura 8. Fuerza de empuje                                                         | 43   |
| Figura 9. Estabilidad de un buque                                                  | 43   |
| Figura 10. Cuerpo flotante levemente inclinado para muestra de altura metacéntrica | 45   |
| Figura 11. Cuerpo flotante estable e inestable                                     | 45   |
| Figura 12. Altura Metacéntrica Lateral en un Floatplane                            | 48   |
| Figura 13. Altura metacéntrica lateral Piper PA-18                                 | 50   |

| Figura 14. Altura metacéntrica longitudinal Piper PA-18                               | 51  |
|---------------------------------------------------------------------------------------|-----|
| Figura 15. Fases del hidroavión en amaraje                                            | 52  |
| Figura 16. Efecto de la sección transversal en la deflexión del spray                 | 55  |
| Figura 17. Sección transversal de los flotadores diseñados                            | 56  |
| Figura 18. Tipos de rediente y orificios compensadores de vacío                       | 57  |
| Figura 19. Factor de carga de impacto vs. Manga del flotador                          | 76  |
| Figura 20. Resultante de la reacción del agua para un casco con y sin rediente        | 80  |
| Figura 21. Sección transversal del flotador catamarán                                 | 82  |
| Figura 22. Tipos de acampanamiento                                                    | 84  |
| Figura 23. Línea de agua estática                                                     | 85  |
| Figura 24. Dimensiones para el cálculo del coeficiente de estabilidad direccional Rvd | 86  |
| Figura 25. Factor de peso de la estación del casco                                    | 90  |
| Figura 26. Definición de ángulos en el fondo del flotador                             | 96  |
| Figura 27. Distribución transversal de presiones                                      | 96  |
| Figura 28. Columna en compresión que ilustra el pandeo                                | 101 |
| Figura 29. Esfuerzo directo de tensión y compresión                                   | 102 |

| Figura 30. Ilustración de corte simple                                                      | 104 |
|---------------------------------------------------------------------------------------------|-----|
| Figura 31. Ilustración de corte doble                                                       | 104 |
| Figura 32. Conceptos de discretización                                                      | 108 |
| Figura 33. Puntos de sujeción de la estructura del montante                                 | 110 |
| Figura 34. Diagrama de carga de agua para el caso de aterrizaje en la proa (Algor)          | 110 |
| Figura 35. Diagrama de carga de agua para el caso de aterrizaje en la proa                  | 111 |
| Figura 36. Diagrama de solidó libre para el caso de aterrizaje en la proa                   | 111 |
| Figura 37. Sección de corte Nº 1 (Proa)                                                     | 112 |
| Figura 38. Sección de corte Nº 2 (Proa)                                                     | 112 |
| Figura 39. Sección de corte Nº 3 (Proa)                                                     | 113 |
| Figura 40. Sección de corte Nº 4 (Proa)                                                     | 113 |
| Figura 41. Diagrama de cortantes y momentos flectores para el caso de aterrizaje en la proa | 114 |
| Figura 42. Diagrama de carga de agua para el caso de aterrizaje en el paso (C.G) (Algor)    | 115 |
| Figura 43. Diagrama de carga de agua para el caso de aterrizaje en el paso (C.G)            | 115 |
| Figura 44. Diagrama de solidó libre para el caso de aterrizaje en el paso (C.G)             | 116 |

| Figura 45. Sección de corte Nº 1 (Paso)                                                     | 117 |
|---------------------------------------------------------------------------------------------|-----|
| Figura 46. Sección de corte Nº 2 (Paso)                                                     | 117 |
| Figura 47. Diagrama de cortantes y momentos flectores caso de aterrizaje en el paso         | 118 |
| Figura 48. Diagrama de carga de agua para el caso de aterrizaje en la popa (Algor)          | 119 |
| Figura 49. Diagrama de carga de agua para el caso de aterrizaje en la popa                  | 119 |
| Figura 50. Diagrama de solidó libre para el caso de aterrizaje en la popa                   | 120 |
| Figura 51. Sección de corte Nº 1 (Popa)                                                     | 121 |
| Figura 52. Sección de corte Nº 2 (Popa)                                                     | 121 |
| Figura 53. Sección de corte Nº 3 (Popa)                                                     | 122 |
| Figura 54. Sección de corte Nº 4 (Popa)                                                     | 122 |
| Figura 55. Diagrama de cortantes y momentos flectores para el caso de aterrizaje en la popa | 123 |
| Figura 56. Diagrama de carga de agua para el caso de aterrizaje asimétrico (Algor)          | 124 |
| Figura 57. Diagrama de carga de agua para el caso de aterrizaje asimétrico                  | 124 |
| Figura 58. Diagrama solidó libre para el caso de aterrizaje asimétrico                      | 125 |
| Figura 59. Sección de corte Nº 1 (Asimétrico)                                               | 126 |
| Figura 60. Sección de corte Nº 2 (Asimétrico)                                               | 126 |

| Figura 61. Diagrama de cortantes y momentos flectores para el caso de aterrizaje asimétrico | 127 |
|---------------------------------------------------------------------------------------------|-----|
| Figura 62. Esfuerzos axiales para el caso de aterrizaje en la proa                          | 131 |
| Figura 63. Esfuerzos axiales para el caso de aterrizaje en el paso (C.G.)                   | 132 |
| Figura 64. Esfuerzos axiales para el caso de aterrizaje en la popa                          | 133 |
| Figura 65. Esfuerzos axiales para el caso de aterrizaje asimétrico                          | 133 |
| Figura 66. Sección Transversal Strut.                                                       | 136 |
| Figura 67. Tipos de Conexión en Columnas                                                    | 136 |
| Figura 68. Cable de Control Flexible 1X19                                                   | 141 |
| Figura 69. Puntos de unión de los soportes a los flotadores y al fuselaje                   | 142 |
| Figura 70. Soporte D                                                                        | 164 |
| Figura 71. Unión entre los fitting y los soportes                                           | 197 |
| Figura 72. Diagrama Explicativo para el Flujo de Cortadura                                  | 198 |
| Figura 73. Falla por corte                                                                  | 201 |
| Figura 74. Falla por apoyo                                                                  | 207 |
| Figura 75. Falla por desgarre                                                               | 208 |

| Figura 76. Falla por tensión                                    | 208 |
|-----------------------------------------------------------------|-----|
| Figura 77. Deformaciones y esfuerzos en carga de proa           | 216 |
| Figura 78. Deformaciones y esfuerzos con carga de rediente      | 217 |
| Figura 79. Deformaciones y esfuerzos con carga de popa          | 218 |
| Figura 80. Soportes del montante                                | 219 |
| Figura 81. Deformación y esfuerzos del soporte A, en tracción   | 221 |
| Figura 82. Deformación y esfuerzos del soporte A, en compresión | 222 |
| Figura 83. Designación refuerzos en el flotador                 | 223 |
| Figura 84. Análisis de esfuerzos y deformaciones stringer 1     | 224 |
| Figura 85. Análisis de esfuerzos y deformaciones stringer 2     | 225 |
| Figura 86. Análisis de esfuerzos y deformaciones stringer 3     | 226 |
| Figura 87. Análisis del Conjunto Piel Inferior con Cuadernas    | 227 |
| Figura 88. Cuadernas consideradas críticas                      | 228 |
| Figura 89. Análisis cuaderna a 1/5 del forebody                 | 229 |
| Figura 90. Cuaderna situada debajo del c.g. de la aeronave      | 230 |
| Figura 91. Cuaderna al 85% del afterbody                        | 231 |

## LISTA DE GRAFICAS

| Grafica 1. Efecto de la relación forebody/manga vs. Características de spray       | 54 |
|------------------------------------------------------------------------------------|----|
| Grafica 2. Peso de componentes de la aeronave vs. Peso bruto de diseño             | 68 |
| Grafica 3. Ubicación del C.G Horizontal y Vertical                                 | 73 |
| Grafica 4. Angulo dead rise en el afterbody vs. Longitud, profundidad del rediente |    |
| y ángulo del afterbody                                                             | 83 |

## LISTA DE ANEXOS

|                                                                                                         | pág. |
|---------------------------------------------------------------------------------------------------------|------|
| Anexo A. Datos de peso para aeronaves de un solo motor                                                  | 241  |
| Anexo B. Distancias desde los CG delantero y trasero a<br>las cuadernas de 1/5 forebody y 85% afterbody | 245  |
| Anexo C. Propiedades materiales seleccionadas en el diseño                                              | 247  |
| Anexo D. Tubos perfilados                                                                               | 248  |
| Anexo E. Dimensiones fitting 3, 4, 5, 6 ,7 y 8                                                          | 250  |
| Anexo F. Dimensiones del montante                                                                       | 252  |
| Anexo G. Dimensiones del flotador catamarán                                                             | 255  |
| Anexo H. Soportes A, B, C y D                                                                           | 258  |
| Anexo I. Tablas normalizadas de tornillos y pasadores                                                   | 263  |

#### LISTA DE ABREVIATURAS

La siguiente nomenclatura se usó para el diseño de los flotadores.

$$A = Lift, (Kgf).$$

b = Manga

 $\beta$  = Angulo dead rise

 $\beta_k$  = Angulo dead rise hacia la quilla.

C.B. = Centro de flotación.

C<sub>C</sub> = Constante de la columna

C.G. = Centro de gravedad

C<sub>L</sub> = Coeficiente de sustentación

$$C\Delta_{o}$$
 = Coeficiente de carga bruta =  $\frac{\Delta_{o}}{wM^{3}}$ 

d = Densidad

- E = Eslora, longitud del flotador
- G = Peso teórico para el diseño de los flotadores, (Kgf)

g = Aceleración de la gravedad = 9,81  $\frac{m}{s^2}$  = 32,174  $\frac{ft}{s^2}$  386,1 =  $\frac{in}{s^2}$ 

G.M. = Altura metacéntrica

Ist = Distancia horizontal desde el rediente al centro de flotación, (m)

K = Coeficiente de spray = 
$$\frac{\Delta_0}{\gamma_F M L_f^2}$$

k = Factor de fijación para los extremos de una columna

L = Eslora

La = Longitud del afterbody

Le = Longitud efectiva

L<sub>f</sub> = Longitud del forebody

- m = Masa
- M = Manga
- Mc = Metacentro
- MAC = Cuerda media aerodinámica

P = Puntal

- P<sub>1</sub> = Carga de impacto, (Kgf)
- P<sub>a</sub> = Carga crítica permisible
- P<sub>Cr</sub> = Carga crítica de pandeo
- R = Rediente
- R<sub>I</sub> = Radio interno
- r<sub>min</sub> = Radio de giro
- S<sub>H.T.</sub> = Area de estabilizador horizontal
- S<sub>R</sub> = Razón de esbeltez
- S<sub>Y</sub> = Resistencia a la cedencia del material
- S<sub>V.T.</sub> = Area de Estabilizador Vertical
- S<sub>w</sub> = Area alar
- t<sub>st</sub> = Distancia vertical desde el fondo de la quilla en el rediente a la línea de agua, (m).
- $\tau_a, \tau =$  Esfuerzo cortante
- V = Volumen
- Vs = Volumen sumergido
- V<sub>so</sub> = Velocidad de perdida en configuración de aterrizaje
- V<sub>S1</sub> = Velocidad de perdida en el peso teórico de decolaje
- W = Gross weight Piper PA-18

W<sub>E</sub> = Peso vacío

W<sub>E+Floats</sub> = Peso vacío con flotadores

W<sub>G</sub> = Peso bruto

- W<sub>ML</sub> = Peso mínimo de aterrizaje
- W<sub>TO</sub> = Peso máximo de decolaje
- W<sub>2</sub> = Peso teórico de taxeo

W<sub>3</sub> = Peso teórico de decolaje

 $\Delta_0=\Delta=~{\rm Peso}$ 

 $\gamma_{AGUA}$  = Peso especifico del agua dulce =1000  $\frac{Kgf}{m^3}$  = 62,4  $\frac{Lbf}{ft^3}$ 

 $\gamma_{\rm F}$  = Peso especifico del fluido

- $\alpha$  = Angulo entre la horizontal y la tangente a la quilla en el paso (°).
- $\delta$  = Angulo entre el forebody y el afterbody (°)
- $\phi$  = Diámetro
- $\sigma$  = Esfuerzo calculado
- $\sigma_s$  = Resistencia a la fluencia
- $\sigma_a$  = Esfuerzo admisible

 $\sigma_{\scriptscriptstyle abr},\sigma_{\scriptscriptstyle br}~$  = Esfuerzo de apoyo

 $\sigma_{\scriptscriptstyle at},\sigma_{\scriptscriptstyle t}~$  = Esfuerzo de tensión

 $\sigma_{\scriptscriptstyle ac}$ , $\sigma_{\scriptscriptstyle c}$  = Esfuerzo de compresión

 $\sigma_{ab}, \sigma_b$  = Esfuerzo flector

- $\overline{x}$  = Distancia horizontal desde el datum line hasta el centro de gravedad
- $\overline{y}$  = Distancia vertical horizontal desde el water line hasta el centro de gravedad

## GLOSARIO

AFTERBODY: es el cuerpo a popa en el fuselaje del flotador.

ALCAD: capa de aluminio puro que se deposita sobre las aleaciones de aluminio para protegerlas contra la corrosión.

ALODINE: tratamiento químico de ácido crómico que se aplica sobre el aluminio antes de ser pintado no solo para proteger el material si no también para mejorar el enlace con la pintura

ANODIZADO: proceso que consiste en obtener de manera artificial, películas de oxido de aluminio en la superficie del metal, de mucho mas espesor y con mejores características de protección que las capas naturales, estas se obtienen mediante procesos químicos y electrolíticos.

CATAMARAN: *(del nombre de una canoa india) s*istema de flotación que consta de dos barquillas o flotadores gemelos, las cuales producen la menor cantidad de ola, y la superficie perfilada, causa la mínima resistencia de carena.

CARGA LIMITE: cargas máximas esperadas en servicio de la aeronave o producto.

CARGA ULTIMA: carga límite multiplicada por un factor de seguridad

CENTRO DE BOYAMIENTO: ó centro de flotación, es el punto sobre el cual se considera que actúan todas las fuerzas de empuje.

DEAD RISE: altura del fondo en V de cascos y flotadores, diferencia entre la quilla y la arista.

ESLORA: es el largo del flotador.

FEDERAL AVIATION ADMINISTRATION (FAA): máxima autoridad aeronáutica en Estados Unidos, Administración Federal de Aviación.

FOREBOFY: es el cuerpo a proa en el fuselaje del flotador.

GROSS WEIGHT: máxima Carga Bruta permisible con la que puede operar la aeronave sin sufrir daños estructurales.

INERCIA: resistencia que opone un cuerpo a cambiar su estado de movimiento o reposo. Es un factor, y como tal, un instrumento usado por los ingenieros para calcular el aumento aparente del peso de los objetos sometidos a una aceleración.

MANGA: ancho máximo del flotador, que habitualmente es la sección donde se encuentra el rediente.

METHOD-FUEL-FRACTION: es un método por medio del cual se puede estimar el peso de combustible quemado para cada fase de vuelo. En este método cada fase esta definida como la relación entre el peso al inicio y el peso al final de la fase respectiva.

PAYLOAD: carga paga llevada por la aeronave.

PAR-AL-KETONE: es una mezcla de las fracciones oxidadas controladas de petróleo en una solución solvente. Es un inhibidor excelente de la corrosión para uso en piezas que están expuestas al ataque corrosivo del ambiente. Se recomienda para cables de control. Puede ser aplicado con cepillo, rociado, o sumergiendo las piezas.

PERFORMANCE: actuación, comportamiento, rendimiento, resultados de eficiencia, maniobra, desempeño y comportamiento funcional.

PESOS MAXIMO DE OPERACIÓN (PMO): son los pesos máximos a los cuales la aeronave esta certificada para operar, sin presentar daño estructural. Estos pesos son: Peso Máximo de Taxeo, Peso Máximo de Decolaje, Peso Máximo de Aterrizaje.

PRIMER: cebador, pintura de imprimaciór ntura, de color verde, que se aplica de fondo para proteger las superficies de la corrosiór

RADIO DE GIRO: es la resistencia que opone un cuerpo a girar sobre un eje que pasa su centro de centro de gravedad si toda la masa del cuerpo se considera concentrada en un punto.

REDIENTE: se denomina así al escalón que quiebra la discontinuidad de la parte inferior del flotador.

STERNPOST: miembro vertical donde termina el flotador.

### RESUMEN

Este trabajo de grado contempla la definición, y tipos de flotadores e hidroaviones, se explican las condiciones que se deben cumplir en el diseño, especificaciones de la aeronave Piper PA-18-150, dimensionamiento de los flotadores, cálculo de las cargas de agua basado en normativa FAR 23, y se concluye con el análisis estructural de los flotadores apoyado en la tecnología asistida por computador CAD-CAE.

### Cinco palabras claves:

- Aeronáutica.
- Hidroaviación.
- Flotador Catamarán.
- Elementos Finitos.
- Análisis Estructural.

#### JUSTIFICACIÓN

Colombia esta bañada por dos océanos Atlántico y Pacífico. Las cuencas hídricas están determinadas así: *Cuenca del Orinoco*: compuesta por los ríos Arauca, Meta, Vichada, Inirida y Guaviare; *Cuenca Amazónica*: compuesta por los ríos de Vaupes, Apaporis, Caqueta y Putumayo; *Cuenca del Océano Pacifico*: los principales ríos son el Mira, el Patia y el San Juan; *Cuenca del Litoral Atlántico*: conformada por el principal y mayor Río de Colombia el Magdalena y su afluente el Cauca, que constituyen 14300 Km. de vías navegables, siendo esto paradójico, nuestra nación no tiene hidroaviación.

Los hidroaviones, son aquellas máquinas voladoras que en su tren de aterrizaje están provistas de flotadores, lo cual permite su permanencia, desplazamiento, aterrizaje y despeje sobre superficies de agua, haciendo del hidroavión una aeronave versátil. Promoviendo la operación del hidroavión en Colombia se hace posible el desplazamiento de personas, productos perecederos, medicina y ayudas en situaciones oportunas.

Con el funcionamiento y operación del hidroavión, el gobierno podría ejercer una excelente presencia estatal llevando a cavo ayudas a zonas damnificadas en forma oportuna, promoviendo el desarrollo social, movimiento mercantil y la economía del país. Creando a su vez una cultura aeronáutica a seguir.

Solamente las naciones que han desarrollado su propia industria aeronáutica han ejercido soberanía y presencia real en su territorio, siendo ejemplo países como Canadá, EE.UU. y Brasil. La evolución de las aeronaves en el último siglo ha sido sorprendente, e innumerables han sido los servicios que ha prestado a la humanidad, ya sea en tiempos de paz, de guerra, de alegría o de tragedia.

### **OBJETIVO GENERAL**

Realizar el análisis y calculo estructural de un flotador, basados en un Hidroavión estilo catamarán o de doble flotador, teniendo en cuenta deformaciones, esfuerzos y las características que proceden para el estudio de la cualidad de flotabilidad y estabilidad.

## **OBJETIVOS ESPECÍFICOS**

1. Exponer las cualidades y limitaciones de los hidroaviones.

2. Exponer y aplicar las consideraciones que se emplean en el diseño de flotadores para aeronaves.

3. Determinar los esfuerzos y cargas que intervienen en los flotadores de un hidroavión.

4. Analizar los tipos de esfuerzos y deformaciones que soportan los flotadores y su estructura de sujeción al fuselaje.

5. Conocer las regulaciones y normas que rigen el diseño de los flotadores.

6. Aplicar los programas asistidos por computador CAD y CAE en el diseño y análisis estructural de los flotadores.

7. Aplicar los conceptos de mecánica de fluidos y de materiales, en el análisis y cálculo estructural de los flotadores aplicado a la aeronave seleccionada anteriormente, cumpliendo con todos los requisitos ya establecidos.

#### INTRODUCCIÓN

Colombia posee una ubicación geopolítica estratégica que le permite ser el país más central del continente americano, y paso obligado de rutas aéreas que comunican las tres Américas. Colombia posee 1.141.748 km<sup>2</sup> de área terrestre, su área marina es de 928.660 km<sup>2</sup>, el único país de Sudamérica con islas y costas tanto en el Pacifico como en el Atlántico, con 14300 km. de vías navegables; nación donde a pesar de su inmensidad de recursos hídricos no hay hidroaviación. Con el diseño y posible desarrollo de este proyecto se pretende incentivar la industria aeronáutica en Colombia, siendo primordial que el estado proporcione los elementos necesarios para el desarrollo de ésta, permitiendo la inversión de capital nacional y extranjero.

En 1910 sobre el Étang de Berre (Francia), el Ingeniero Henri Fabre realiza el primer despegue y acuatizaje de un hidroavión equipado con flotadores diseñados y construidos por el mismo, denominado hidroaeroplano. Empezando así el desarrollo de la hidroaviación en todo el mundo. A partir de entonces se construyeron numerosos aparatos de este género: entre ellos el primer hidroavión con flotadores de barquilla, tipo catamarán de Farman; el hidroavión de flotador único, de Curtiss, y por último el primer hidroavión de casco, de Donet-Lévêque, en 1912.

Este trabajo de grado presenta el diseño de flotadores tipo catamarán aplicado a la Piper PA-18, su objetivo es analizar estructuralmente los flotadores y el montante de éstos a la aeronave, haciendo uso de programas CAD y CAE, teniendo presente las características que se deben reunir para que el flotador diseñado obtenga un performance aceptable. En este trabajo no se tuvo en cuenta el estudio aerodinámico e hidrodinámico detallado, ni el análisis de las fuerzas de aceleración que aumentan el peso de los componentes cuando la aeronave efectúa un viraje, ya que esto supone el tema para un nuevo trabajo de grado. Tampoco el estudio de mercadeo y Análisis financiero que demostrara la viabilidad del proyecto.

En el primer capitulo se parte de la definición y exploración de los tipos de hidroaviones y flotadores, para tener un conocimiento preeliminar de las diferentes configuraciones, y ubicar al lector en el tipo

de flotador especifico que se elegido, aclarando criterios de selección, y analizando los fundamento físicos en los cuales están basados los flotadores.

El segundo capitulo, se dedicó para analizar los parámetros de diseño que deben reunir los flotadores. A partir de este estudio, se optimizó el diseño preeliminar de los mismos, se calculó la estabilidad lateral y longitudinal como también el Coeficiente de Spray "K".

Las especificaciones de la aeronave, pesos teóricos de operación, velocidades de perdida y el corrimiento del centro de gravedad son tratados en el capitulo tercero. El diseño de los flotadores se contempla en el capitulo cuarto: se parte de un factor primordial como es el peso, y a partir de éste se determina el volumen que requieren los flotadores para soportar el peso máximo de la aeronave; Se plantean las dimensiones de los flotadores, teniendo presente las características mencionadas en el capítulo dos, extrapolando la información disponible en diversas fuentes y teniendo en cuenta un criterio de ingeniería en la selección de los parámetros; se determina la línea de agua estática y la estabilidad direccional del hidroavión.

A partir de los pesos teóricos de operación y las velocidades de perdida, se determinaron los factores de reacción del agua, cargas de aterrizaje y presiones en el fondo del flotador, las cuales se contemplan en el capitulo quinto bajo las condiciones de FAR 23, como requerimiento para ejecutar el análisis estructural de los flotadores, el cual se desarrolló en el capitulo seis. En éste capitulo las reacciones en los puntos de apoyo del montante del flotador, diseño de struts, tortillería, soportes, fittings y flujo de cortadura, se calcularon con las cargas de aterrizaje. Con las presiones en el fondo del flotador se analizaron las pieles inferiores, stringers y cuadernas, por medio del programa Algor.

Las técnicas para la prevención de la corrosión en hidroaviones son explicadas en el capítulo siete, llevándose a cabo una comparación entre las normas recomendadas y los requerimientos mínimos, y se explica cual de las dos clases es más conveniente. En el último capitulo se presenta un análisis de los costos que conllevo la realización de este trabajo de grado.

## 1. HIDROAVIONES, FLOTADORES Y FUNDAMENTOS FÍSICOS.

### 1.1 DEFINICIÓN Y TIPOS DE HIDROAVIONES

El hidroavión es un tipo de aeronave diseñada y construida especialmente para que pueda maniobrar, decolar, acuatizar y permanecer en el agua después del vuelo.

Los hidroaviones o hidroaeroplanos conocidos por desempeñar su operación en agua, no deben confundirse con el hidroplano, que es un vehículo con especie de canoa automóvil no voladora, cuya superficie sumergida tiene una forma apropiada para producir una reacción hidrodinámica sustentadora durante su marcha.

Figura 1. Comparación entre hidroplano e hidroavión.



Fuente: www.cronovenecia.it

El principio del hidroavión está fundado en las reacciones del agua sobre los flotadores o el casco. A gran velocidad, poco antes del despegue, los flotadores del hidroavión planean y su peso es progresivamente compensado, ya no por elemento líquido, si no por la sustentación de las alas. En este momento el aparato inicia el despegue. El casco del hidroavión debe satisfacer numerosas condiciones o requisitos: constituye una síntesis armónica en las que se conjugan las exigencias
hidrodinámicas en el momento del despegue y los imperativos aerodinámicos del vuelo. El casco ha de poseer la solidez necesaria para resistir choques a gran velocidad contra las olas, al despegar o al acuatizar, y conservar al tiempo un grado de ligereza satisfactorio que le confiera buenas cualidades de vuelo.

Generalmente, debido al mayor peso del flotador, aumenta el peso vacío de la aeronave y baja la capacidad de su carga útil. La consideración primaria en la construcción del flotador es el empleo de material resistente, de peso ligero, para que el diseño estructural ejerza un funcionamiento óptimo.

Existen varias clases de hidroaviones y cada uno de estos reciben su nombre por la disposición del flotador, ya que los flotadores pueden ser aislados o formar parte del fuselaje, aquí es donde los flotadores empieza a ser protagonistas del desarrollo de la Hidroaviación, siendo los siguientes los más reconocidos:

**1.1.1 Hidroavión con flotador central.** Cuando forma parte del fuselaje el hidroavión suele llamarse también canoa volante. El flotador aislado puede ser único o doble; la primera disposición suele llevar flotadores auxiliares en los extremos de las alas para evitar que éstas toquen en el agua si el aeroplano se inclina lateralmente, los cuales pueden ser de forma fuselada, de mínima resistencia al avance, o terminando por debajo en una chapa inclinada que levante al ala al tocar el agua por la reacción aerodinámica creada.

Figura 2. Hidroavión con flotador central.



Fuente: Hidroaviación. Aerotecnia capitulo 23.

**1.1.2 Hidroavión con doble flotador.** La disposición general de los hidroaviones de doble flotador, es análoga a la de los aviones terrestres. El flotador doble tiene la ventaja de adaptarse mejor al tren de aterrizaje de un avión terrestre, cuando se trata de convertirle en hidro, con sólo sustituir las ruedas por flotadores.

En todos estos sistemas de flotadores aislados se suele colocar en el extremo de la cola otro flotador auxiliar, análogo a los de las alas, para evitar que aquélla entre en el agua si el hidroavión toma una posición demasiado encabritada.

Figura 3. Hidroavión con doble flotador.



Fuente: Hidroaviación. Aerotecnia capitulo 23.

**1.1.3 Canoa voladora.** Las canoas voladoras difieren del hidroavión con flotador central en que el grupo motopropulsor debe estar situado más alto para evitar que la hélice no pueda tocar el agua, y dejar a distancia el fuselaje flotador, por lo cual en estos hidroaviones la propulsión suele pasar por encima del centro de gravedad y el de presiones.

Figura 4. Canoa volante.



Fuente: Hidroaviación. Aerotecnia capitulo 23

**1.1.4 Anfibio.** Existe una clase de aeroplanos dotados de tren de aterrizaje y de flotadores, que pueden partir y descender indistintamente en tierra y en agua, llamados anfibios. Generalmente tienen la forma de canoa volante con ruedas que son levantadas a voluntad del piloto para que no toquen el agua en los acuatizajes. Otro sistema es el de tener las ruedas semiocultas dentro de los flotadores dobles, dejando al descubierto sólo la parte que ha de tocar en tierra en el aterrizaje.



Figura 5. Canoa volante anfibia.

Hidroaviación. Aerotecnia capitulo 23

#### Figura 6. Anfibio de doble flotador.



Fuente: Wipline flotas model 2100 parts manual.

### **1.2 DEFINICIÓN Y TIPOS DE FLOTADORES**

El hidroavión se clasifica según la disposición del flotador a la cual se encuentre diseñado, por ejemplo si es utilizado en el fuselaje de la aeronave (canoa Volante) o cuando se reemplazan los trenes convencionales por flotadores dobles (catamarán). El flotador es la parte esencial del hidroavión, ya que el trabajo desarrollado por éste es de suma importancia para su operación.

El flotador es un elemento impermeable al agua que permite al hidroavión o al aeroplano anfibio despejar o amarar, sirve también para proporcionarle estabilidad cuando está posado sobre el agua. Los flotadores reciben su clasificación dependiendo de su forma, siendo las más comunes las siguientes:

**1.2.1 Forma de hidroplano.** El flotador tiene una parte plana inclinada, que forma un ángulo de ataque con el agua, que al recibir su reacción sustentadora se eleva y disminuye la parte sumergida. Véase figura 7(a).

**1.2.2 Catamarán.** (*del nombre de una canoa india*): Sistema de flotación que consta de dos barquillas o flotadores gemelos, las cuales producen la menor cantidad de ola, y la superficie perfilada, causa la mínima resistencia de carena. Véase figura 7(b).

**1.2.3 Flotadores de persianas o de aletas.** Constituidos por varias chapas metálicas superpuestas en forma de superficies sustentadoras, generalmente inclinado lateralmente hacia el centro del aeroplano, adaptados al cuerpo flotante, originando una reacción sustentadora en el agua, de buen rendimiento por su forma perfilada elevando el hidroavión a medida que la velocidad aumenta, disminuyendo el numero de superficies sumergidas y la resistencia al agua. Véase la Figura 7 (c).

**1.2.4 Forma canoa.** En esta se consigue la minina resistencia por una proa afilada que corta mejor el agua. Véase la figura 7(d).

Figura 7. Tipos de flotadores.



Fuente: Hidroaviación. Aerotecnia capitulo 23

### **1.3 FUNDAMENTOS FÍSICOS**

1.3.1 Fluido. Sustancia que cambia su forma continuamente siempre que este sometida a un esfuerzo cortante ( $\tau$ ), sin importar que tan pequeño sea.

1.3.2 Fluido incompresible. Aquel que presenta cambios muy pequeños en su densidad a pesar de estar sometido a grandes presiones. Se supone que su densidad es constante para los cálculos.

1.3.3 Fluido compresible. Cuando la densidad de un fluido no puede considerarse constante bajo condiciones estáticas.

1.3.4 Densidad. Es la masa de la unidad de volumen de una sustancia

$$d = \frac{m}{V}$$
(1.1)

Donde: d = densidad

m = masa V = volumen

1.3.5 Peso específico. Es el peso de la unidad de volumen de una sustancia

$$\gamma = \frac{W}{V} \tag{1.2}$$

Donde:  $\gamma$  = peso especifico

W = Peso V = Volumen

1.3.6 Presión. Es la magnitud de la fuerza ejercida perpendicularmente por unidad de área de la superficie (magnitud escalar)

$$\mathsf{P} = \frac{F}{A} \tag{1.3}$$

Donde: P = Presión

F = Fuerza A = Area 1.3.7 Viscosidad. Propiedad de un fluido que tiende a oponerse a su flujo cuando se le aplica una fuerza. La fuerza con la que una capa de fluido en movimiento arrastra consigo a las capas adyacentes de fluido determina su viscosidad, que se mide con un recipiente llamado viscosímetro.

1.3.8 Principio de Arquímedes. Cuando un cuerpo se encuentra total o parcialmente sumergido en un fluido experimenta una fuerza ascendente que actúa sobre él, llamada *fuerza de flotación o Empuje.* La fuerza de flotación o empuje hidrostático de cualquier cuerpo en el agua, según el *principio de Arquímedes*, es igual al peso del fluido desalojado por la parte del cuerpo sumergida en el fluido.

$$\mathsf{E} = \gamma \ V_s \tag{1.4}$$

Donde,  $\gamma$  es el peso específico del fluido, y  $V_s$  es el volumen del cuerpo sumergido.





Fuente: Autores

Una aplicación del Principio de Arquímedes, es el cálculo del volumen de agua desplazada por los flotadores para que puedan soportar el peso bruto de la aeronave, siendo el peso, el factor determinante en el diseño del flotador, porque de él se obtienen las demás características.

1.3.9 Metacentro. La fuerza de flotación de un cuerpo siempre actúa a través del centroide del volumen desplazado, mientras que el peso lo hace a través del centro de gravedad. Estas características pueden hacer que un cuerpo parcial o totalmente sumergido sea estable o inestable. Considérese inicialmente un cuerpo en flotación. Si al inclinar levemente el cuerpo, existen fuerzas hidrostáticas que tienden a hacer volver al cuerpo a su posición original, se dice que el cuerpo es estable, por el contrario, si estas fuerzas tienden a alejar el cuerpo de su posición inicial, se dice que el cuerpo el cuerpo es inestable, véase Figura 9.





Fuente: Mecánica de fluidos

La estabilidad de un cuerpo flotante depende directamente del metacentro, siendo éste la intersección del vector resultante de la fuerza de empuje, con un plano vertical que pasa por el centro de gravedad del cuerpo y por el eje alrededor de la cual se estudia la estabilidad, véase figura 10.



Figura 10. Cuerpo flotante levemente inclinado para muestra de altura metacéntrica.



De forma general, la diferenciación entre estabilidad e inestabilidad puede hacerse al observar el punto de intersección del eje (A-A) del cuerpo flotante, con la línea de acción del empuje (B-B). A este punto se le conoce con el nombre de metacentro (mc). Observando la figura 11 se deduce que el cuerpo flotante es estable si el CG está por debajo del mc e inestable si su CG está por encima del mc.

Figura 11. Cuerpo flotante estable e inestable.



Fuente: Mecánica de fluidos e hidráulica.

# 2. PARAMETROS DE DISEÑO.

Existen ciertas condiciones básicas que se deben tener en cuenta para que el diseño de hidroaviones y flotadores, obtenga un performance aceptable en su operación. Se señalan las siguientes condiciones:

- 1. Flotabilidad y estabilidad estática.
- 2. Resistencia y sustentación hidrodinámica.
- 3. Spray.
- 4. Estabilidad dinámica sobre el agua.
- 5. Maniobrabilidad y control.

# 2.1 FLOTABILIDAD Y ESTABILIDAD ESTATICA

Cuando la aeronave se encuentra en el agua aparecen estos dos factores de gran importancia. La *flotabilidad* del hidroavión se obtiene por el fluido desalojado por los flotadores. Es preciso, que el diseño de los flotadores sea el adecuado para que la flotabilidad sea garantizada para la máxima carga admisible.

Para un cuerpo que flota en la interfaz de dos fluidos, el empuje es igual al peso, esto es, *un cuerpo que flota desplaza un volumen de fluido equivalente a su propio peso.* 

$$E = W = \gamma_F V_S \tag{2.1}$$

Donde, E = Empuje

- W = Peso
- $\gamma_F$  = Peso específico del fluido
- V<sub>S</sub> = Volumen sumergido

La estabilidad estática de los hidroaviones depende como en el caso de los barcos, de las posiciones relativas del centro de gravedad de la nave y de su metacentro. La estabilidad aumenta cuando la distancia del centro de gravedad y el metacentro sea mayor, siempre y cuando éste (mc) se encuentre por encima de él. Cuando el metacentro queda por debajo del centro de gravedad, el hidroavión es inestable. Si ambos puntos coinciden, el equilibrio es indiferente.

2.1.1 Estabilidad lateral y longitudinal. Uno de los factores importantes en el diseño de hidroaviones, es la estabilidad estática sobre el agua. Se consideran dos casos: *la estabilidad lateral y longitudinal*. Los hidroaviones equipados con flotadores dobles, generalmente presentan estabilidad lateral satisfactoria, por la separación horizontal de sus flotadores. Las canoas volantes requieren el uso de flotadores auxiliares en los planos, para asegurar la estabilidad lateral, mientras que la estabilidad longitudinal es asegurada por el diseño de cascos robustos.

A continuación se presenta el cálculo de las alturas metacéntricas para los flotadores diseñados. En el estudio de las alturas metacéntricas lateral y longitudinal, W S. Diehl<sup>1</sup>, presenta las ecuaciones (2.2), (2.3), (2.4) y (2.5), que se derivan de una formula convencional de la arquitectura naval, y en sus deducciones, se supone que el area del fondo de los flotadores es rectangular. Vale la pena aclarar que estas ecuaciones corresponden a aproximaciones satisfactorias para las alturas metacéntricas. Véase la figura 12.

• Estabilidad Lateral.

$$GM = \frac{19.5 * Ls^2 b}{\Delta} \tag{2.2}$$

<sup>&</sup>lt;sup>1</sup>DIEHL, W. S. Technical Notes National Advisory Committee for Aeronautics No. 183 Static Stability of Seaplane Floats and Hulls. s.l. : NACA, Marzo 1924. p. 3, 5 – 6.

Donde: GM = Estabilidad Lateral

L = Eslora o longitud de los flotadores

- s = Espaciamiento entre flotadores o trocha
- b = Manga
- $\Delta$  = peso bruto en libras.

Figura 12. Altura Metacéntrica Lateral en un Floatplane



Fuente: Technical Notes National Advisory Committee for Aeronautics No. 183

• Estabilidad Longitudinal.

$$GM = \frac{2,1nbL^3}{\Delta}$$
(2.3)

Donde: GM = Estabilidad Longitudinal

L = Eslora o longitud de los flotadores

n = Número de flotadores

b = Manga

 $\Delta$  = Peso bruto en libras.

La altura metacéntrica (GM) es aproximadamente una función lineal del Gross Weight. Entonces, para la altura metacéntrica lateral:

$$GM = 13 + 0,002W$$
 (2.4)

Donde, GM es la altura metacéntrica lateral, y W es el Gross Weight.

Y para la altura metacéntrica longitudinal:

$$GM = 15 + 0,002W$$
 (2.5)

Donde, GM es la altura metacéntrica longitudinal, y W es el Gross Weight.

GM esta en ft y el Gross Weight W en Lbf.

La aplicación que se dio a estas formulas, en el diseño de los flotadores tipo catamarán, es la siguiente:

De la ecuación (2.4) se calculó la altura metacéntrica lateral:

$$\therefore GM = 16,5 \,\text{ft} = 5,0292 \,\text{m}$$

Figura 13. Altura metacéntrica lateral Piper PA-18



Fuente: Autores.

Reemplazando el valor de la altura metacéntrica lateral en la ecuación (2.2) y despejando *s*, se obtuvo la longitud de trocha entre los flotadores<sup>\*</sup>. Se debe tener en cuenta que los valores L y b (eslora y manga) son calculados en ... sección 4.1...

$$\mathsf{GM} = \frac{19,5Ls^2b}{\Delta}$$

$$\therefore$$
 *s* = 6,528 *ft* = 1,9897*m*

<sup>\*</sup> Este valor se midió transversalmente de quilla a quilla entre flotadores.

De la ecuación (2.5) se calculó la altura metacéntrica longitudinal:

Figura 14. Altura metacéntrica longitudinal Piper PA-18.



Fuente: Autores.

Después de determinar las alturas metacéntricas lateral y longitudinal, y al compararlas con el centro de gravedad de la aeronave, se concluye que los flotadores diseñados presentan buenas características de estabilidad lateral y longitudinal.

### 2.2 RESISTENCIA Y SUSTENTACIÓN HIDRODINÁMICA

Estos dos factores ofrecen gran interés durante las operaciones del despegue y amaraje. Cuando el hidroavión amara ocurren tres fases sucesivas: 1) La mayor parte de la sustentación es aerodinámica, ver figura 15a, 2) Ya en contacto con el agua, su principal sustentación es hidrodinámica, ver figura 15b, y 3) Por su baja velocidad, prácticamente toda la sustentación es hidrostática, ver figura 15c. Durante el despegue las fases se producen de forma inversa.

Figura 15. Fases del hidroavión en amaraje.



Fuente: Autores

La sustentación hidrodinámica se produce por el movimiento relativo de las partes sumergidas del hidroavión (flotadores), con un determinado ángulo de ataque, en su avance sobre el agua. En los hidroaviones esta sustentación se logra por medio de flotadores con fondos en forma de "V" (Quilla), con el fin de reducir la carga de impacto y el peso estructural, al ser mas eficaces para la sustentación hidrostática. La resistencia hidrodinámica se debe a tres causas: resistencia por fricción superficial, resistencia inducida por la formación de olas y presión normal opuesta al avance.

### 2.3 SPRAY

El spray se origina por la presión máxima que se desarrolla en la zona de entrada en el agua del fondo de planeo hidrodinámico del flotador. Existen dos tipos de rociones: 1)los producidos en el amaraje, al entrar en contacto el fondo del flotador con el agua, y 2) los debidos a la proyección de agua hacia arriba y hacia atrás por las aristas de la zona de flotación de los flotadores, que se producen durante todo el recorrido del hidroavión en el agua.

Hay varios métodos en la reducción del spray. Uno de ellos es curvar el fondo del flotador, desde la quilla hacia la arista (acampanamiento), o bien colocar chapas separadoras en dicha arista, de modo que las líneas de corriente de agua del roción tropiezan con ellas y se desvíen, siendo además arrastradas por el aire hacia la superficie del agua. También influye favorablemente contra los rociones el aumento de la relación Eslora/Manga.

El análisis de las características de spray en el diseño de los flotadores, se basó en el coeficiente de spray K, presentado por David Thurston en *Design for Flying*. Por tratarse de flotadores Catamarán, el análisis se hizo para un solo flotador considerando la mitad del peso de la aeronave. El procedimiento que se siguió fue calcular el coeficiente spray K, y después compararlo con los valores de la Grafica 1. Puesto que el coeficiente spray K, calculado para los flotadores catamarán, es 0,0675<*K*<0,0825, la característica de spray obtenida es satisfactoria.

Coeficiente de spray K:

$$\mathbf{K} = \frac{\Delta o}{\gamma_F M L_f^2} \tag{2.6}$$

Donde:  $\gamma_F$  Peso especifico del agua = 62,4 Lbf/ft<sup>3</sup> = 1000 Kgf/m<sup>3</sup>

M = Manga maestra\* = 0,5989 m = 1,9649 ft

 $L_f$  = Longitud del forebody\* = 2,9646 m = 9,7246 ft

<sup>\*</sup>Valores presentados en la sección 4.1.

$$K = \frac{875 lbf}{\left(62, 4\frac{Lbf}{ft^3}\right) (1,9649 ft) (9,7246 ft)^2}$$
  
$$\therefore K = 0.0755$$





Fuente: Design for Flying. 2 ed.

El spray no debe oscurecer peligrosamente la visión de los pilotos o dañar las hélices u otras partes del hidroavión ó anfibio durante el taxeo, despeje y aterrizaje. El control del spray toma lugar en el fondo del flotador cerca de las aristas. El agua es aplanada cuando la sección se dobla hacia la

horizontal, según la figura 16b con un radio de curvatura no muy pequeño. Con una sección recta (figura 16a) los rociones de agua continúan la dirección del fondo, mientras con curvatura pronunciada en la arista (figura 16c) estos se dirigen contra la superficie dónde se refleja a un ángulo alto. Según explica W. Sottorf<sup>2</sup>, una curvatura en la arista que se pronuncia más allá de una línea imaginaria horizontal, tiene un efecto muy desfavorable sobre el choque de aterrizaje y por lo tanto es evitada.



Figura 16. Efecto de la sección transversal en la deflexión del spray.

Fuente: Technical memorandum No. 860

Para el diseño de la sección transversal de los flotadores, se empleó un fondo acampanado, con aristas dobladas hacia los extremos, figura 17.

<sup>&</sup>lt;sup>2</sup>NEWES, E. Die Stosskrfte an Seeflugzeugen bei Starts und Landungen. Citado por Sottorf, W. Technical Memorandum National Advisory Committee for Aeronautics No. 860 The Design of Flotas. Washington : N.A.C.A. 1937. p.9.

Figura 17. Sección transversal de los flotadores diseñados.



Fuente: Autores

### 2.4 ESTABILIDAD DINÁMICA SOBRE EL AGUA

Ofrece gran interés en su aspecto longitudinal, ya que la inestabilidad en este sentido origina diversos tipos de cabeceo, tanto a pequeños como a grandes ángulo de asiento de los flotadores. Este cabeceo longitudinal es llamado delfineo. Con respecto al delfineo, FAR 23 señala que un hidroavión o anfibio no puede tener características peligrosas o incontrolables de delfineo a cualquier velocidad normal de operación en el agua<sup>3</sup>.

A pequeños ángulos de asiento, el delfineo se produce por la variación de la distribución longitudinal de presiones, debida a la curvatura de la zona de flotación, lo que se corrige aplanando el fondo del flotador delante del paso, por lo menos 1,5 veces la manga.

<sup>&</sup>lt;sup>3</sup>ESTADOS UNIDOS. FEDERAL AVIATION ADMINISTRATION. Federal Aviations Regulations (FAR) Subcharter C – Aircraft : Part 23 Airworthiness Standards: Normal, Utility, Acrobatic, and Commuter Category Airplanes. Estados Unidos : FAA, 1999. p. 104

Para grandes ángulos de siento, la parte posterior del fuselaje se sumerge en el agua (lo mismo ocurre con los flotadores, en su caso), debido a la succión que se crea en la misma. Para disminuir el efecto de succión es preciso ventilar la zona posterior del fondo de planeo hidrodinámico del flotador introduciendo de algún modo, una capa de aire entre la flotador y el agua, mediante un escalón, que puede ser recto, elíptico, etc.., o bien con un sistema de ranuras, a través de las cuales se hace pasar aire de los compresores del motor, buscando en cada caso el mínimo incremento de la resistencia hidrodinámica.





Fuente: Ultralivianos y experimentales

#### 2.5 MANIOBRABILIDAD Y CONTROL

La estabilidad direccional del hidroavión depende de la relación longitud/separación transversal de los flotadores. Por lo tanto, en el proyecto de un hidroavión ha de tenerse en cuenta dicha relación, ya que la maniobrabilidad óptima va ligada a un determinado grado de estabilidad ... sección 4.3 ..., al que debe llegarse sin sobrepasarlo.

Los hidroaviones con flotadores dobles, suelen llevar estabilizadores direccionales en los flotadores. El control direccional puede realizarse con un timón similar al de los barcos, cuya efectividad esta condicionada a que el hidroavión lleve el ángulo de asiento adecuado para que dicho timón se sumerja en el agua. Es frecuente, según el tipo de aparato, el empleo de los flaps de agua, situados en ambos costados del casco del fuselaje de canoa o bien en los flotadores dobles, la deflexión diferencial de estos flaps permite el control direccional del hidroavión sobre el agua, mientras que la deflexión conjunta y en el mismo sentido de ambos se utiliza como dispositivo de frenado. El control de los mandos aerodinámicos en el agua solo es posible a grandes velocidades.

Puesto que el objetivo de este Trabajo de Grado es el análisis estructural, el estudio de la estabilidad direccional se contempló de forma breve. Sin embargo, el comportamiento hidrodinámico y aerodinámico podría ser analizado en estudios posteriores.

### 2.6 HABILIDAD PARA OPERAR EN CIERTOS ESTADOS MARITIMOS

La capacidad que posee un hidroavión para operar en ciertos estados marítimos, está ligada a la altura de ola. Si la superficie del agua está en calma, el hidroavión despegará al obtener la velocidad necesaria, sin dificultad, pero si está agitada, varía continuamente la reacción que recibe el flotador, ocasionando cabeceos que compuestos con el efecto ascendente o descendente de las olas, unas veces se favorece la maniobra de despegue y otras se perjudica, resultando que, en este caso, y si no se trata de un hidroavión con exceso de potencia, es imposible determinar ni aun aproximadamente el espacio que necesitará recorrer por el agua para despegar, puesto que el azar puede presentar una ola favorable en una posición oportuna del aeroplano que lo lance al aire, o, por el contrario, hacer que una serie de olas actúen perjudicialmente a la partida.

Algunos valores reales de la capacidad del estado de mar son de uso práctico. Hay una gran tendencia a desestimar la altura de la ola, con resultados igualmente desafortunados. Los reportes de servicio indican que las siguientes capacidades de altura de ola pueden ser previstas seguramente, dependiendo de las condiciones del estado de mar, véase cuadro 1.

| Desplazamiento del<br>Casco (Lbf) | Altura de ola (ft) |  |
|-----------------------------------|--------------------|--|
| 2000                              | 1                  |  |
| 4000                              | 1,75-2             |  |
| 8000                              | 2,5                |  |
| 20000                             | 3,5                |  |
| 60000                             | 5                  |  |
| 100000                            | 6                  |  |

Cuadro 1. Desplazamiento del casco vs. Altura de la ola.

Fuente: Design for Flying. 2 ed.

Puesto que se debe establecer una altura de ola que sea segura para la operación del hidroavión, con base en el cuadro 1 se estimó una altura de ola de 0,85 ft para un desplazamiento de 1750 Lbf de los flotadores Catamarán.

# 3. ESPECIFICACIONES DE LA AERONAVE PIPER PA-18-150.

Los siguientes datos fueron tomados del Type Certificated Data Sheet Nº 1A2, el cual corresponde a la aeronave PIPER PA-18.

Cuadro 2. Características de la Aeronave Piper PA-18-150 Super Cub

| ESPECIFICACIONES DE LA AERONAVE PIPER PA-18 |                                       |  |  |
|---------------------------------------------|---------------------------------------|--|--|
| ENGINE                                      | Lycoming 0-320                        |  |  |
| ENGINE LIMITS                               | All operations, 2700 r.p.m. (150 hp)  |  |  |
| DATUM                                       | WING LEADING EDGE                     |  |  |
| CERTIFICATION BASIS                         | <b>TYPE CERTIFICATION No. 1A2</b>     |  |  |
| GROSS WEIGHT (lbf)                          | 1750                                  |  |  |
| EMPTY WEIGHT (Standard) (lbf)               | 930                                   |  |  |
| USEFUL LOAD (lbf)                           | 820                                   |  |  |
| WING AREA (sq ft)                           | 178,5                                 |  |  |
| LENGTH (ft)                                 | 22,5                                  |  |  |
| HEIGTH (ft)                                 | 6,7                                   |  |  |
| PROPELLER                                   | Sensenich M74DM ó 74DM6               |  |  |
| PROP DIAMETER (max in)                      | 74                                    |  |  |
| WING LOADING                                | 10                                    |  |  |
| BAGGAGE CAPACITY (Lbf)                      | 50                                    |  |  |
| FUEL                                        | 80/87 Minimum Grate Aviation Gasoline |  |  |
| FUEL CAPACITY (Gal)                         | 36                                    |  |  |
| FUEL CONSUMPTION (gal /hrs) (75% power)     | 9                                     |  |  |
| OIL CAPCITY                                 | 8 Quarts                              |  |  |
| CRUISING RANGE (75% power)                  | 460                                   |  |  |
| NUMBER OF SEATS                             | 2                                     |  |  |

Fuente: Aircraft Specification Nº 1A2

### 3.1 PESOS TEORICOS DE OPERACIÓN PIPER PA-18-150

Puesto que la aeronave Piper PA-18-150 fue aprobada en el año 1954, y por tratarse de una aeronave cuyo peso es relativamente bajo (1750Lbf), la información de los pesos de operación es insuficiente. Dicha información es necesaria para calcular los factores de carga de agua n<sub>w</sub> y cargas de aterrizaje ... véase sección 5.... Por esta razón, se hizo una estimación de los pesos teóricos de operación. Para aeronaves civiles, el peso máximo de decolaje  $W_{TO}$  y el peso bruto  $W_G$  son frecuentemente iguales, aunque hay excepciones. Para el análisis del Fuel-Fraction-Method, en este trabajo de Grado, el W<sub>TO</sub> y el W<sub>G</sub> se supusieron iguales.

A partir del Peso Vacío y del Peso Bruto de la aeronave, que es la información disponible, se estimó el Peso Vacío con flotadores\*, Peso Teórico de Aterrizaje\*, Peso Teórico de Taxeo\*, y Peso Teórico de Decolaje\*. También se calculó la nueva capacidad de carga útil ó payload.

El Peso Vacío de la Piper PA-18 150 es de 930 Lbf. Puesto que se van a montar flotadores en lugar del tren de aterrizaje, el Peso Vacío de la aeronave aumenta y su capacidad de carga útil disminuye. Para calcular el Peso Vacío de la aeronave con flotadores instalados, del Peso Vacío Standard se restó el peso del tren de aterrizaje, y se sumó el peso estimado de los flotadores y struts. Con respecto a la estimación inicial del peso de los flotadores, Juan Luís Barrionuevo señala: "si no se tienen datos de otros flotadores, para un calculo inicial, se estima un 15% del peso total de la aeronave"<sup>4</sup>.

<sup>&</sup>lt;sup>4</sup>BARRIONUEVO, Juan Luís. Diseño de Flotadores. Argentina : El autor, s.f. p. 3.

<sup>\*</sup>Pesos teóricos de operación

<sup>\*\*</sup>Este peso corresponde a la suma de los ítems 201(a), 202(d) y 204(h) del TCDS de la aeronave Piper PA-18.

Cuadro 3. Calculo peso vacío Piper PA-18 con flotadores y struts instalados.

| Componente             | Peso (Lbf) |
|------------------------|------------|
| Peso Vacio             | 930        |
| Tren de aterrizaje**   | 37         |
| Flotadores             | 262,5      |
| Struts del flotador    | 32,5       |
| Peso Vacio + Flotadoes | 1188       |

Fuente: Autores.

En el cálculo del Peso Mínimo de Aterrizaje, se consideró el Peso Vació con flotadores, el peso de un tripulante y una reserva de combustible de 4,5 galones, para así suponer el caso más critico, ya que los factores de carga n<sub>w</sub> son inversamente proporcionales al peso.

Cuadro 4. Calculo peso mínimo de aterrizaje PIPER PA-18

| Componente             | Peso (Lbf) |
|------------------------|------------|
| Peso Vacio + Flotadoes | 1188       |
| 1 piloto               | 170        |
| 4,5 Gal. Fuel          | 27         |
| Peso de Aterrizaje     | 1385       |

Fuente: Autores.

La metodología empleada para calcular el Peso Teórico de Taxeo, y Peso Teórico de Decolaje se basó en el Fuel-Fraction-Method [Método de Fracción de Combustible]. A propósito del Fuel-Fraction Jan Roskam<sup>5</sup>, explica que es un método que se utiliza para determinar el combustible quemado por la aeronave, método en el cual, la misión de la aeronave es divida en varias fases, y a cada fase corresponde un valor numérico que se asigna dependiendo del tipo de aeronave.

El Fuel-Fraction es una relación de pesos al comienzo y al final de cada fase de la misión del avión. Como se supuso que el  $W_G$  para la Piper PA-18 es igual  $W_{TO}$ , lo que se hizo fue tomar los valores de Fuel-Fraction para las tres primeras fases de la misión (encendido, taxeo y decolaje) e ir reemplazando hasta hallar el Peso Teórico de Taxeo y Peso Teórico de Decolaje respectivamente.

Fase 1. Encendido del motor = 
$$\frac{W_1}{W_{TO}} = 0,995$$
  
 $W_1 = 0,995W_{TO}$  (3.1)

Fase 2. Taxeo = 
$$\frac{W_2}{W_1} = 0,99$$

$$W_2 = 0.99W_1 = 0.99 * 0.995W_{TO} \tag{3.2}$$

Peso teórico de taxeo = (0,99)(0,995)(1750Lbf)

∴ Peso teórico de taxeo = 1723, 8375Lbf = 781,9327Kgf

<sup>5</sup>ROSKAM, Jan. Preliminary Sizing of Airplanes. Ottawa, Kansas : Roskam Aviation and Engineering Corporation, 1985. p. 21 - 24. (Airplane Design ; no. 1)

Fase 3. Decolaje = 
$$\frac{W_3}{W_2} = 0,996$$

$$W_3 = 0.996W_2 = 0.996 * 0.99 * 0.995W_{TO}$$
(3.3)

Peso teórico de decolaje = W<sub>3</sub> = (0,996)(0,99)(0,995)(1750Lbf)

.: Peso teórico de decolaje = 1716,9422Lbf = 778,805Kgf

Seguidamente se calculó la nueva capacidad de carga útil de la aeronave con los flotadores catamarán. Esta carga útil fue designada como Carga Útil <sub>Floatplane</sub>, que significa la carga útil en configuración de Floatplane:

Carga Útil <sub>Floatplane</sub> = (1750 – 1188) Lbf

∴ Carga Útil Floatplane = 562Lbf

Al comparar la carga útil y el peso vació de la aeronave en configuración terrestre (820Lbf y 930Lbf respectivamente), con la Carga Útil <sub>Floatplane</sub> y peso vació con flotadores (562Lbf y 1188Lbf), se advierte que el convertir una aeronave terrestre en hidroavión aumenta su versatilidad, pero disminuye su capacidad de carga útil al aumentar su peso vació.

La carga útil es la suma del peso del combustible, pasajeros, equipaje y carga. El nuevo peso de equipaje y carga que puede llevar la aeronave en configuración de floatplane es:

$$Carga Util_{Floatplane} = W_F + W_{CREW} + W_{BAGGAGE} + W_{CARGA}$$
(3.5)

Donde, Carga Útil Floatplane = Carga útil en configuración de Floatplane:

W<sub>F</sub> = Peso del combustible

W<sub>CREW</sub> = Peso de la Tripulación

WBAGGAGE + WCARGA = Peso de equipaje y carga

$$W_{F}^{*} = 36 gall \left(\frac{6Lbf}{1 gall}\right) = 216Lbf$$
$$W_{CREW} = 2Passanger \left(\frac{170Lbf}{1Passanger}\right) = 340Lbf$$

 $562Lbf = 216 Lbf + 340 Lbf + W_{BAGGAGE} + W_{CARGA}$ 

 $\therefore W_{BAGGAGE} + W_{CARGA} = 6Lbf.$ 

# 3.2 CALCULO DE VELOCIDADES DE PERDIDA

Una vez se determinados los pesos teóricos de operación, se calcularon las velocidades de perdida. Para el cálculo de la velocidad de entrada en perdida sin motor, Jan Roskam<sup>6</sup> nos presenta la siguiente ecuación:

$$V_{S} = \sqrt{\frac{2W}{C_{L_{MAX}}S\rho}}$$
(3.6)

<sup>&</sup>lt;sup>6</sup>ROSKAM, p. 102 – 103.

<sup>\*</sup>  $W_F$  se calculó conociendo que 1 galon de combustible pesa 6 Lbf.

Donde,  $C_{L_{MAX}}$  = Coeficiente de sustentación máximo de despegue con flaps arriba (clean).

- W = Peso Bruto
- S = Area alar = 178,5 ft<sup>2</sup>.
- $\rho$  = Presión atmosférica Standard a nivel del mar = 0,002377  $\frac{slug}{ft^3}$
- $C_{L_{MAX_{I}}}$  = Coeficiente de sustentación máximo en configuración de aterrizaje.

 $C_{L_{MAX_{TO}}}$  = Coeficiente de sustentación máximo en configuración de decolaje.

Con base en la formula (3.6) se calcularon las velocidades de perdida V<sub>SO</sub> y V<sub>S1</sub>. Los valores para los coeficientes de sustentación son  $C_{L_{MAX_L}} = 2,1^*$  y  $C_{L_{MAX_{TO}}} = 1,6^*$ . El Peso Bruto de la aeronave Piper PA-18-150 Super Cub es de 1750Lbf y el Peso Teórico de Decolaje W<sub>3</sub> ...véase numeral 3.1... es de 1716,9422Lbf.

 $V_{SO}^{**}$  = Velocidad de perdida, con flaps extendidos en configuración de aterrizaje y sin efecto de torbellino de hélice.

$$V_{SO} = \sqrt{\frac{2W_G}{C_{L_{MAX_L}}S\rho}} = \sqrt{\frac{2(1750 \ Lbf)}{(2,1)(178,5 \ ft^2)(0,002377 \ \frac{slug}{ft^3})}}$$
(3.7)

<sup>\*</sup>Estos datos fueron tomados en base a valores de coeficientes de sustentación máximos presentados por Jan Roskam en su libro Airplane Design Part I: Preliminary sizing of airplanes. \*\*Esta velocidad fue evaluada con el peso bruto, para prever la condición más crítica.

:. 
$$V_{so} = 62,6745 \frac{\text{ft}}{\text{s}} = 37,1032 \text{KT} = 42,7439 \text{mph}$$

 $V_{S1}$  = Velocidad de perdida a Peso Teórico de Decolaje, con flaps extendidos en configuración de decolaje,

$$V_{S1} = \sqrt{\frac{2W_3}{C_{L_{MAX_{TO}}}S\rho}} = \sqrt{\frac{2(1716,9422Lbf)}{(1,6)(178,5ft^2)(0,002377\frac{slug}{ft^3})}}$$
(3.8)

$$\therefore V_{s_1} = 71,1212 \frac{\text{ft}}{\text{s}} = 42,1038 \text{KT} = 48,5047 \text{mph}$$

### 3.3 PESO Y BALANCE

Al convertir la aeronave Piper PA-18 en un hidroavión, su centro de gravedad varía. Por tanto se hace necesario hacer un nuevo peso y balance con el objeto de verificar que los CG siguen estando en los límites para los cuales la aeronave está certificada

En el análisis del peso y balance de la Piper PA-18, se tomo información del certificado tipo, y se estimaron algunos pesos de componentes, porque este tipo de información no se encontraba disponible en el momento en que se realizó el análisis. El procedimiento empleado para estimar estos pesos, se basó en dos fuentes: Jan Roskam, en *Component Weight Stimation*, y David Thurston, en *Design for Flying*.

Del certificado tipo se tomaron los pesos y centros de gravedad del motor, hélice, batería, tanques de combustible y oil cooler, ver cuadro 7.

En Design for Flying, David Thurston, nos presenta la grafica 2, la cual es una guía de diseño preeliminar para estimar los pesos básicos, en aeronaves de un solo motor. En base a esta grafica se estimaron algunos pesos para la aeronave Piper PA-18, los cuales son presentados a continuación:

Peso Superficies de cola = 41 Lbf Peso Planos = 197 Lbf Peso Fuselaje = 215 Lbf

Grafica 2. Peso de componentes de la aeronave vs. Peso bruto de diseño.



Fuente: Design for Flying 2 ed.

El peso de los instrumentos+aviónica, nacelle, Controles de superficies, Sistema de Aire acondicionado, fueron estimados por el Método de las fracciones de peso. Jan Roskam<sup>7</sup> explica, que en este método, se supone que dentro de cada categoría de aeronave es posible expresar el peso de los componentes como una fracción de uno de los siguientes pesos:

W<sub>TO</sub> = Peso de Decolaje W<sub>G</sub> = Peso bruto de diseño W<sub>E</sub> = Peso Vacío.

A continuación se presenta el procedimiento empleado para estimar los pesos de los componentes por medio del método de las fracciones de peso.

1. Se listaron los pesos para la Piper PA-18:

| $W_{TO} = W_G = 1750 \text{ Lbf}$ | W <sub>E</sub> = 1188 Lbf | $W_{BAGGAGE} + W_{CARGA} = 6 Lbf$ |
|-----------------------------------|---------------------------|-----------------------------------|
| W <sub>PL</sub> = 562 Lbf         | $W_{CREW}$ = 340 Lbf      | W <sub>F</sub> = 216 Lbf          |

2. Dentro de los grupos de aeronaves presentadas por Jan Roskam, se seleccionó la categoría aeronaves de un solo motor. Esta categoría es la que mejor se ajusta al tipo de aeronave Piper PA-18. Se identificaron aquellas aeronaves que podrían ser usadas para estimar las fracciones de peso. Se escogieron la Cessna 150 y Cessna 172, por que son las aeronaves que tienen un peso similar al de la Piper PA-18 y por que su estructura primaria es metálica. El Anexo A, contiene datos del peso de los componentes para aeronaves de un solo motor.

<sup>&</sup>lt;sup>7</sup>ROSKAM, Jan. Component Weight Estimation: Ottawa, Kansas : Roskam Aviation and Engineering Corporation, 1985. 3 p. (Airplane design ; no. 5)

3. Se elaboró una lista de los componentes de la aeronave para los cuales se necesitaba estimar los pesos. Por razones de practicidad, únicamente se consideraron los siguientes pesos.

| Controles de Superficie | Instrumentos + Aviónica        |  |  |
|-------------------------|--------------------------------|--|--|
| Nacelle                 | Heating and ventilating System |  |  |

Los pesos para el sistema eléctrico y el sistema de combustible no se estimaron, puesto que se conocían los pesos de la batería y los tanques de combustible, que son los componentes que tienen un peso más representativo en cada sistema respectivamente.

El peso del aceite y combustible atrapado se desprecio, porque las líneas para estos sistemas no son muy grandes y su longitud es corta.

4. Del anexo A se escogieron las fracciones de peso mas apropiadas a ser usadas. El cuadro 5 lista estas fracciones y su valor promedio.

Cuadro 5. Fracciones de peso promedio Piper PA-18

| Item Cessna              |         | Cessna  | Piper    |  |
|--------------------------|---------|---------|----------|--|
|                          | 150     | 172     | Promedio |  |
| Nacelle Group/WG         | 0,015   | 0,012   | 0,0135   |  |
| Surface control/GW       | 0,0177  | 0,0141  | 0,0159   |  |
| Avionics + Instrument/GW | 0,00171 | 0,00182 | 0,00177  |  |
| Air Cond. System/GW      | 0,00057 | 0,00054 | 0,00056  |  |

#### Fuente: Autores

5. Los pesos de los componentes se estimaron multiplicando el Peso Bruto de la Piper PA-18 por las fracciones de peso promedio, ver cuadro 6.

#### Cuadro 6. Pesos estimados Piper PA-18

| Componente               | Peso estimado |  |  |
|--------------------------|---------------|--|--|
|                          | (Lbf)         |  |  |
| Nacelle Group/GW         | 24            |  |  |
| Surface control/GW       | 28            |  |  |
| Avionics + Instrument/GW | 3             |  |  |
| Air Cond. System/GW      | 1             |  |  |

#### Fuente: Autores

Los C.G. para los componentes del cuadro 7, se basó en la metodología presentada por Jan Roskam<sup>8</sup>, en la cual, los componentes de una aeronave son divididos en tres grupos: *Componentes estructurales, componentes de la planta de poder y equipo fijo*; y la localización de sus respectivos centros de gravedad se da con base a una longitud horizontal y vertical del componente.

El C.G. de la nacelle se considera aplicado al 40% de su longitud. Los centros de gravedad de los controles de vuelo, aire acondicionado, instrumentos + aviónica se estimaron de acuerdo a los esquemas de cada componente. Estos esquemas se encuentran en el Manual de aeronave Piper PA-18. El centro de gravedad para los planos se consideró al 40% de la MAC. Los datos del C.G. del fuselaje, empenaje, flotadores y struts fueron hallados por medio del programa Solig Edge, véase grafica 3.

El análisis de peso y balance se presenta en el cuadro 7. Las coordenadas  $\overline{x}$  y  $\overline{y}$  del centro de gravedad de la aeronave, se hallaron al hacer la sumatoria de las columnas 6 y 8 , y dividirlas por la sumatoria de la columna 4.

<sup>&</sup>lt;sup>8</sup>ROSKAM, Component Weight Estimation, Op. cit., 113-116 p. (Airplane design ; no. 5)

$$\overline{x} = \frac{\sum Momentos \ Horizontales}{\sum Pesos} = \frac{20735,04Lbf * in}{1188Lbf} = 17,454in$$

$$\frac{1}{y} = \frac{\sum Momentos \ Horizontales}{\sum Pesos} = \frac{95555,59Lbf * in}{1188in} = 80,434in$$

|   | No                                               | Itom                   | Boso (I bf) | Brazo           | Momento             | Brazo         | Momento           |
|---|--------------------------------------------------|------------------------|-------------|-----------------|---------------------|---------------|-------------------|
|   | NU.                                              | item                   | Fest (LDI)  | Horizontal (in) | Horizontal (Lbf.in) | Vertical (in) | Vertical (Lbf.in) |
| 1 | 1                                                | Fuselaje               | 215         | 60,9            | 13093,5             | 93,22         | 20042,3           |
|   | 2                                                | Planos                 | 197         | 25,2            | 4964,4              | 118,61        | 23366,17          |
|   | 3                                                | Empenaje               | 41          | 184,7           | 7572,7              | 115,32        | 4728,12           |
|   | 4                                                | Flotadores             | 262,5       | 19,2            | 5040                | 26,76         | 7024,5            |
|   | 5                                                | Strut                  | 32,5        | 17,3            | 562,25              | 44            | 1430              |
|   | 6                                                | Motor                  | 244         | -42,75          | -10431              | 86,94         | 21213,36          |
|   | 7                                                | Helice                 | 30          | -57             | -1710               | 86,94         | 2608,2            |
|   | 8                                                | Nacelle *              | 47          | -42,5           | -1997,5             | 88            | 4136              |
|   | 9                                                | Tanques de Combustible | 16          | 25              | 400                 | 118,39        | 1894,24           |
|   | 10                                               | Oil Cooler             | 3           | -53             | -159                | 82            | 246               |
|   | 11                                               | Controles de Vuelo     | 28          | 4,23            | 118,44              | 87,12         | 2439,36           |
|   | 12                                               | Bateria                | 28          | 84              | 2352                | 95,23         | 2666,44           |
|   | 13                                               | Instrumentos, Avionica | 3           | -7,25           | -21,75              | 92,33         | 276,99            |
|   | 14                                               | Seat 1                 | 20          | 11              | 220                 | 85            | 1700              |
|   | 15                                               | Seat 2                 | 20          | 37              | 740                 | 85            | 1700              |
|   | 16                                               | Air Cond. System/GW    | 1           | -9              | -9                  | 83,91         | 83,91             |
|   |                                                  | Empty Weight           | 1188        |                 | 20735,04            |               | 95555,59          |
|   |                                                  | C.G del Hidroavión     |             | 17,454          |                     | 80,434        |                   |
|   | Desplazamiento del C.G con el Hidroavión Cargado |                        |             |                 |                     |               |                   |
|   |                                                  | Fuel                   | 216         | 25              | 5400                | 118,39        | 25572,24          |
|   |                                                  | Passanger 1            | 170         | 11              | 1870                | 85            | 14450             |
|   |                                                  | Passanger 2            | 170         | 37              | 6290                | 85            | 14450             |
|   |                                                  | Baggage + Carga        | 6           | 57              | 342                 | 78            | 468               |
|   |                                                  | Gross Weight           | 1750        |                 | 34637,04            |               | 150495,83         |
|   |                                                  | C.G del Hidroavión     |             | 19,793          |                     | 85,998        |                   |

Fuente: Autores

<sup>\*</sup> Al peso de la Nacelle se le sumó un peso estimado del montante del motor de 23Lbf.
Grafica 3. Ubicación del C.G Horizontal y Vertical.



Fuente: Autores.

Del cuadro 7 se observa que los nuevos centros de gravedad están en las estaciones 17,4 y 19,7. Se verifica que los CG después de quitar el tren convencional y montar los flotadores diseñados, siguen estando en los límites para los cuales la aeronave fue certificada, estos son 14 y 20 in para el CG delantero y CG trasero respectivamente\*.

<sup>\*</sup>Los limites de los centros de gravedad fueron tomados del Type Certificated Data Sheet Nº 1A2

## 4. DISEÑO DE FLOTADORES.

En el diseño del flotador se utilizó una forma fuselada o currentilínea, con el fin de ayudar a disminuir el arrastre del flotador. Para este capitulo también es importante resaltar que el factor de seguridad, en cualquier tipo de diseño es una cualidad de suma importancia. Las FAR 23.303 recomiendan un factor de seguridad con un valor de 1.5 para ser usado en los cálculos de diseño<sup>9</sup>.

En el diseño de los flotadores tipo catamarán, se consideró un Peso de Diseño mayor al Gross Weight de la aeronave, con el objeto que los flotadores así diseñados se puedan aplicar a otras aeronaves con pesos similares. Sin embargo, el análisis estructural, se realiza con el peso de cada aeronave en particular.

Gross weight Piper PA-18= 1750Lbf = 793,8Kgf Peso teórico = 1850Lbf = 839,16Kgf  $\therefore \frac{Peso \ Terorico}{2} = \frac{1850Lbf}{2} = 925Lbf = 419,58Kgf$ 

Con respecto a hidroaviones de flotador doble, las FAR 23 dicen, que en cada flotador se considera la mitad del peso de la aeronave<sup>10</sup>. Para el diseño de los flotadores se consideró un Peso teórico igual a 1850Lbf. En el calculo del volumen de agua desplazado por los flotadores, se tuvo en cuenta un 80% de exceso de flotabilidad<sup>11</sup>, razón por la cual, el volumen de los flotadores se multiplica por un factor de 1,8. Despejando el volumen de la ecuación (1.2), tenemos que:

<sup>9</sup>ESTADOS UNIDOS. FEDERAL AVIATION ADMINISTRATION, Op. cit., p. 105.

<sup>&</sup>lt;sup>10</sup>Ibid., p.117.

<sup>&</sup>lt;sup>11</sup>Ibid., p.131.

$$V=1,8\frac{w}{\gamma} \tag{4.1}$$

Donde, V= volumen

w = Peso teórico/2

 $\gamma$  = Peso especifico del fluido

$$V = \frac{1.8 \frac{W}{2}}{\gamma_{agua}} = \frac{1.8(419,58 \text{ Kgf})}{1000 \frac{Kgf}{m^3}} = 0.7552 \text{ m}^3$$
  
$$\therefore V = 0.7552 \text{ m}^3 = 26.6696 \text{ ft}^3$$

## 4.1 DIMENSIONES DEL FLOTADOR

Las dimensiones del flotador se empezaron a calcular con base en bibliografía diversa sobre el tema, extrapolándose la información mas especifica para así llegar al criterio de diseño final. A continuación se calculan la dimensión de la manga y el puntal de la sección maestra, la eslora, el Forebody y Afterbody, el rediente, los ángulos Dead rise y el ángulo de afterbody.

La manga es el ancho máximo del flotador, que habitualmente es la sección donde se encuentra el rediente. Como señala Sottorf<sup>12</sup>, las mangas para un sistema de flotador varían entre  $0.7 \sqrt[3]{\frac{w}{\gamma_{agua}}}$  y  $1.4\sqrt[3]{\frac{w}{\gamma_{agua}}}$ . Una manga más estrecha tiene una formación de spray pesada,

<sup>&</sup>lt;sup>12</sup>SOTTORF, W. Technical Memorandum National Advisory Committee for Aeronautics No. 860 The Design of Floats. Washington : N.A.C.A, 1937. p.7.

mientras que una manga mas ancha presenta un spray ligero. La elección entre estos dos rangos presenta ventajas y desventajas:

La formación del spray se reduce enormemente con el aumento de la manga. Sin embargo, en la fase antes del despegue, la resistencia adicional producida por el spray sobre el afterbody, aumenta con el ancho de la manga.

Con aristas curvas, el factor de impacto disminuye al aumentar la manga, de acuerdo a la Figura 19. Por otro lado, el peso estructural se incrementa con la manga, así que una manga máxima es inadecuada.



Figura 19. Factor de carga de impacto vs. Manga del flotador

Fuente: Technical memorandum N.A.C.A. No. 860

Teniendo presente lo anterior, se escogió un coeficiente multiplicativo de 0,8 para hallar la manga:

Manga = 
$$0.8_3 \sqrt{\frac{w}{\gamma_{agua}}}$$
 (4.2)

Donde, w = peso teórico/2

 $\gamma_{agua}$  = Peso especifico del agua dulce

Manga = 0,8  

$$\sqrt[3]{\frac{419,58Kgf}{1000\frac{Kgf}{m^3}}}$$
  
∴ Manga = 0,5989m = 23,5787in

Con el valor obtenido anteriormente se calculó la eslora, la cual es la longitud del flotador. La relación entre la eslora y la manga tiene un fuerte efecto sobre la resistencia de agua y el impacto de aterrizaje. Un casco más ancho tiene una resistencia de agua más baja debido a su mejor habilidad de planeo pero sufre un impacto de aterrizaje más alto. Las relaciones Eslora/manga varían desde 6 hasta 9, un flotador mas largo con igual manga es más favorable en cuanto a resistencia y estabilidad. Por esta razón, en el dimensionamiento del flotador, se escogió la máxima relación:

Obtenido el valor de la eslora se fijaron para el diseño del flotador ciertos parámetros, en el cual se incluye la curvatura del top del forebody, con el objeto que el flotador adquiera una forma más aerodinámica.

Curvatura del Top para el forebody = 33% Eslora (4.4)  $\therefore$  Curvatura del Top para el forebody = 0,33(5,3901) = 1,7787m = 70,0276in

De la observación de diferentes flotadores, se estimo la longitud del paragolpes:

El puntal es el alto de la cuaderna. Juan Luís Barrionuevo, propone que la altura del puntal varíe entre 10 y 15% de la eslora<sup>13</sup>. El puntal se eligió de 10,5% de la eslora, porque un puntal muy alto aumenta el peso estructural. Una razón segundaria, corresponde a la estética del Hidroavión.

Puntal = 10,5% Eslora (4.6)  
Puntal = 0,105(5,3901m)  

$$\therefore$$
 Puntal = 0,566m = 22,2835in

El forebody en un flotador es el cuerpo a proa. El afterbody es el cuerpo a popa. El fondo del forebody de un flotador o casco, se diseña con mucha similitud a la superficie inferior de una lancha rápida. Sin embargo, el diseño de su parte posterior se diferencia: mientras que en una lancha rápida se busca viajar en un ángulo de inclinación longitudinal (cabeceo) casi constante y, por lo tanto, todo el contorno del fondo es construido en una línea recta continua; el casco o flotador de un hidroavión se debe diseñar para permitirle al mismo girar o cabecear (Encabritado) hasta aumentar el ángulo de ataque del ala y ganar la mayor sustentación para despegues y aterrizajes. Esto se consigue dotando al fondo del flotador de una discontinuidad llamada rediente.

Los argumentos referentes a la relación  $\frac{Forebody(L_f)}{Eslora(E)}$ , definen la ubicación del paso ó rediente. La disminución o aumento de esta relación tiene efectos favorables en las primeras y ultima fases de despegue respectivamente. Según Sottorf<sup>14</sup>, una relación de  $\frac{L_f}{E}$  = 0,55 se considera como un buen valor para flotadores.

<sup>13</sup>BARRIONUEVIO, Op. cit., p.2.<sup>14</sup>SOTTORF, Op. cit., p. 11.

El rediente es una discontinuidad o escalón en el fondo del flotador. Daniel Jiménez Hidalgo muestra la necesidad del uso del rediente en los flotadores citando lo siguiente:

El flotador no debe, en sus distintas posiciones de navegación, alterar el *equilibrio de las fuerzas* que actúan sobre el aeroplano, las cuales deben pasar lo más próximo posible al centro de gravedad ... es necesario que la resultante de la reacción del agua sobre el flotador pase por el centro de gravedad. Durante el reposo esta reacción es vertical, pero en la marcha se inclina hacia atrás. Para corregir esto, se adopta una forma que haga adelantar la reacción del agua sobre el flotador, cuando éste se pone en marcha, la cantidad suficiente para que siga pasando por el centro de gravedad, véase figura 20.

Esto se consigue haciendo que la superficie inferior del flotador no sea continua, sino que, a una cierta distancia de la proa, próxima a la vertical del centro de gravedad, o un poco por atrás, se interrumpa formando un escalón (rediente) que obliga al agua a separarse del fondo del flotador, cuando éste está en marcha, desde el rediente hacia atrás, con lo que la reacción, *R*, queda aplicada a la parte delantera<sup>15</sup>.

<sup>&</sup>lt;sup>15</sup>JIMENEZ HIDALGO, Daniel. Hidroaviación. s.l. s.n. 1999. p. 511 - 512

El rediente puede ser recto en la vista de plano, o puede tener una forma elíptica para disminuir el Drag aerodinámico. *El paso debe estar localizado en un ángulo aproximado de 10° a 20° detrás de CG de la aeronave*, siendo escogido para el diseño una localización de 20°.

Para un casco convencional un paso profundo es preferible a uno poco profundo, porque una mayor profundidad en el contorno del fondo del casco provee una mejor ventilación del rediente, lo cual resulta en punto de despegue mejorado, menores limites de ajustes cruciales y tendencias de cabeceo y delfineo reducidas. Una limitante en la profundidad del paso es el drag que se produce.

Para conseguir una ventilación adicional se debe diseñar la manga en el paso ligeramente mas estrecha que el ancho máximo del cuerpo a proa delante del paso, comenzando así la convergencia hacia el sternpost.



Figura 20. Resultante de la reacción del agua para un casco con y sin rediente.

Fuente: Hidroaviación. Aerotecnia capitulo 23.

La altura del rediente y el ángulo del afterbody tienen un efecto importante sobre las cualidades del flotador al en las fases del despegue. A máxima resistencia, una pequeña profundidad de paso y un

pequeño ángulo de afterbody son ventajosos, sin embargo, justo antes de la salida la mayor profundidad de paso y altos ángulos de afterbody son útiles.

Con respecto a la altura del rediente David Thurston<sup>16</sup>, presenta el 9% de la manga, como un valor satisfactorio para hidroaviones pequeños. En cuanto al ángulo de afterbody, Sottorf<sup>17</sup>, señala 7°, como un valor promedio aceptable.

.:. Angulo del Afterbody = 7°

Cuando el fondo se encuentra pobremente diseñado, durante el despeje se genera un movimiento en el eje transverso denominado delfineo (cabeceo dinámico) que puede llegar a ser desagradable y hasta peligroso si es que se sumerge la proa. Para evitar el delfineo la parte desde el rediente hacia la proa debe ser de perfil recto por lo menos 1.5 veces la manga maestra:

> Longitud recta para evitar delfineo = 1,5M (4.10) Longitud recta para evitar delfineo = 1,5(0,5989m)

: Longitud recta para evitar delfineo = 0,8984m = 35,37in

 <sup>&</sup>lt;sup>16</sup>THURSTON, David. Design for Glying. 2 ed. Estados Unidos : TAB Books, 1995. p.252.
 <sup>17</sup>SOTTORF, Op. cit., p.10.

Para evitar el efecto destructor de la reacción del agua en la operación de un hidroavión, se puede dotar al flotador, en su parte destinada a tocar primeramente el agua, de un saliente afilado, o *quilla,* que se prolongue en la proa, y de forma que aumente gradualmente la sección sumergida. A menos que se trate de una aeronave muy ligera, el fondo en V es obligatorio.

La altura y el ángulo del fondo en V es llamada Dead rise, y ángulo Dead rise, respectivamente, ver Figura 21. Para el diseño de los flotadores tipo catamarán, el ángulo Dead rise de la manga maestra es de 33°, este se incrementó hacia la proa 40° para cortar mejor las olas, y en el afterbody se redujo a 25° para una estabilidad teórica del casco, según la Grafica 4.





Uno de los problemas del fondo en "V" es la generación de spray y/o salpicadura de agua. La primera afecta la hidrodinámica de los flotadores mientras la segunda a los componentes de la aeronave como son la hélice, motor, planos y empenaje. Para contrarrestar este efecto se aplicó al diseño del fondo en "V", un acampanamiento en entre la quilla y la arista. Si el diseño del flotador ya se encuentra construido, se pueden adaptar en los bordes laterales de las aristas, una aleta longitudinal que deflecte el agua. Para obtener una idea de los diferentes tipos de acampanamiento véase la Figura 22:

Fuente: Autores.



Grafica 4. Angulo dead rise en el afterbody vs. Longitud, profundidad del rediente y ángulo del afterbody.

Fuente: Design for flying

Anteriormente se calculó la manga y el puntal de la cuaderna maestra, de estos valores se determinaron las dimensiones de las demás cuadernas mostradas en la Cuadro 8, las cuales cumplen con la función de darle forma al flotador y al mismo tiempo rigidez y resistencia.

Figura 22. Tipos de acampanamiento.



Fuente: Ultralivianos y experimentales.

Cuadro 8. Dimensiones cuadernas del flotador catamarán.

| Cuaderna # | Puntal (in) | Manga (in) | Distancia       |
|------------|-------------|------------|-----------------|
|            | . ,         | 5.( )      | desde Proa (in) |
| 1          | 11,8        | 12,25      | 4,35            |
| Bow Load   | 18,66       | 21,78      | 23,34           |
| 2          | 19,6        | 23,09      | 39,5            |
| 3          | 20,6        | 24,55      | 57,68           |
| 4          | 21,2        | 25,36      | 73,62           |
| Step Load  | 22          | 25,62      | 87,82           |
| 5          | 22,4        | 25,57      | 103,1           |
| ММ         | 23          | 25,39      | 116,72          |
| MM-A       | 20,6        | 25,53      | 116,72          |
| 6          | 16,6        | 24,57      | 126,33          |
| 7          | 17          | 24,07      | 147,64          |
| 8          | 13,2        | 20,27      | 178,45          |
| Stern Load | 10,8        | 16,34      | 197,89          |
| 9          | 9           | 13,14      | 212,21          |

Fuente: Autores.

# 4.2 DETERMINACION DE LA LINEA DE AGUA

Se siguió el siguiente procedimiento: 1) se calculó el volumen de agua que requiere desplazar un flotador para soportar la mitad del peso de la aeronave (396,9 Kgf), sin tener en cuenta el 80% de exceso de flotabilidad; 2) una línea de agua estática fue supuesta y dibujada sobre el flotador. Entonces, por medio de Solid Edge se calculó el volumen de solo aquellas partes del flotador que están debajo de la línea de agua supuesta. 3) El volumen calculado se multiplicó por el peso

específico del agua dulce (1000Kgf/m<sup>3</sup>) para determinar el peso de la aeronave que puede ser soportado por esa cantidad de liquido desplazado, como se muestra en la Figura 23. Para este volumen el peso que podrá soportar cada flotador será de 399 Kgf ó 879,63Lbf.

Despejando el volumen de la ecuación (1.2):

$$V = \frac{W_G}{\gamma_{agua}}$$
(4.11)

Donde, V = Volumen en un flotador

$$\frac{W_G}{2}$$
 = Peso bruto/2

 $\gamma_{agua}$  = Peso especifico del agua

$$V = \frac{396,9Kgf}{1000\frac{Kgf}{m^3}}$$

$$\therefore V = 396,9 m^3$$





Fuente: Autores.

## 4.3 ESTABILIDAD DIRECCIONAL

Al agregar flotadores a una aeronave de operación terrestre, la aerodinámica se afecta en la estabilidad direccional. En algunos casos se deben instalar aletas auxiliares para obtener la superficie vertical necesaria dentro de los márgenes aceptables. Juan Luís Barrionuevo<sup>18</sup> muestra la ecuación (4.12) para calcular el coeficiente de estabilidad direccional, éste se debe mantener en un rango de 0,008 a 0,012.



Figura 24. Dimensiones para el cálculo del coeficiente de estabilidad direccional Rvd.

Fuente: Autores.

$$Rvd = \frac{Sv.Lv}{Lf^3 + 2Lg^3} \tag{4.12}$$

<sup>18</sup>BARRIONUEVIO, Op. cit., p.3.

Donde, Rvd = coeficiente de estabilidad direccional

Sv = Superficie estabilizador vertical Lv = Distancia del C.G. al 25% CAM estabilizador vertical Lf = Largo del fuselaje = 271in Lg = Largo del Flotador = 212,21m

La superficie del estabilizador vertical, calculada por medio de Solid Edge, es de 1755,84in<sup>2</sup>. La distancia desde el C.G. al 25% del CAM del estabilizador vertical es 146,5in, reemplazando en (4.12):

$$Rvd = \frac{(1755,84in^2)(146,5in)}{(271in)^3 + 2(212,21in)^3}$$
  
$$\therefore Rvd = 0,0066$$

El coeficiente de estabilidad direccional calculado no se encuentra en el rango ya establecido, por consiguiente se requiere adicionar un aleta vertical como se muestra en la figura 24 hasta completar la superficie requerida, la cual se determinó despejando  $S_V$  de la ecuación (4.12), y asignando un valor promedio para *Rvd* de 0,01:

$$S_V = \frac{(0,01)((271in)^3 + 2(212,21in)^3)}{(146,5in)}$$

$$\therefore S_V = 2663, 17in^2$$

La aleta compensadora vertical deberá tener una superficie de 907,33in<sup>2</sup>, la cual resulta de la diferencia entre la superficie vertical calculada 2663,17in<sup>2</sup> y la superficie del estabilizador vertical 1755,84in<sup>2</sup>.

# 5. CARGAS DE AGUA.

Las cargas de agua en el del diseño de los flotadores son de suma importancia ya que con ellas se empieza a observar el análisis del flotador con respecto al estado en que se encuentre. Las FAR 23 señalan, que a menos que se haga un análisis detallado de las cargas de agua, las secciones 23.521 a la 23.537 aplican para determinar las cargas de agua<sup>19</sup>.

Las FAR Parte 23, en su sección de *Water loads* [cargas de agua], hablan de dos tipos de esfuerzos a ser soportados por los flotadores: Factores de carga y presiones en el fondo del flotador. Con las reacciones generadas por las cargas de agua se diseñaron los strut, pasadores, fitting y soportes. Mientras que, con las presiones sobre el fondo del flotador, se diseñaron las pieles inferiores, stringer, y cuadernas.

La estructura del flotador debe estar diseñada para resistir las cargas de agua que se desarrollan durante el despegue y aterrizaje, en cualquier actitud de vuelo que probablemente ocurra en operación normal a velocidades de descenso vertical y de avance apropiadas bajo las más severas condiciones.

## 5.1 FACTORES DE CARGA SOBRE EL FLOTADOR

El cálculo de las reacciones de agua n<sub>w</sub> es el siguiente:

<sup>19</sup>ESTADOS UNIDOS. FEDERAL AVIATION ADMINISTRATION, Op. cit., p. 117.

5.1.1 Caso de aterrizaje en el rediente.

$$n_{\rm w} = \frac{c_1 V_{SO}^2}{(Tan^{2/3}\beta)W^{1/3}}$$
(5.1)

5.1.2 Casos de aterrizaje de popa y proa.

$$n_{\rm w} = \frac{c_1 V_{so}^2}{(Tan^{2/3}\beta)W^{1/3}} x \frac{K_1}{(1+\gamma_x^2)^{2/3}}$$
(5.2)

Donde: n<sub>w</sub> = factor de carga de reacción del agua (la reacción del agua dividida por el peso de la aeronave)

C1 = factor empírico de operaciones del hidroavión igual a 0,012

 $V_{SO}^*$  = velocidad de perdida del hidroavión en nudos, con flaps extendidos en la posición apropiada de aterrizaje igual a 37,1032*KT* 

 $\beta$  = ángulo dead rise en la estación longitudinal en la que el factor de carga esta siendo determinado, según el cuadro 13

W\*\* = peso mínimo de aterrizaje de la aeronave, igual a 1385 Lbf

K<sub>1</sub> = factor empírico del peso de la estación del casco, de acuerdo con la figura 25.

<sup>\*</sup>Velocidad de perdida calculada en el numeral ... 3.2 ...

<sup>\*\*</sup>Peso mínimo de aterrizaje, calculado en la sección ... 3.1 ... Es de resaltar que los factores de carga n<sub>w</sub> fueron evaluados con éste peso, porque la relación es inversamente proporcional, y se busca predecir el factor más alto.

A propósito de los factores K<sub>1</sub>, las FAR Part 23 explican lo siguiente: Las fuerzas externas de *Bow, Step and Stern landing cases*, son calculadas para ser soportadas por el flotador en si mismo usando un valor del coeficiente K1 de 1,5 adelante del flotador y K1 = 1 atrás del flotador; las cargas a ser soportadas por la instalación de la aeronave son calculadas con K1 al 80%, es decir con K1 = 1,2 adelante y K1 = 0,8 atrás, por la flexibilidad de la instalación<sup>20</sup>.

Figura 25. Factor de peso de la estación del casco.



Fuente: Apéndice I, FAR Part 23 - Seaplane loads

 $r_x$  = relación de distancia, medida paralela al eje de referencia del casco, desde el centro de gravedad del hidroavión a la estación longitudinal del casco en la cual el factor de carga está siendo calculado a los radios de giro en cabeceo del hidroavión, el eje de referencia del casco es una línea recta, en el plano de simetría, tangencial a la quilla en el rediente.

 $r_x = \frac{\text{distancias desde el C.G. del hidroavión a la estación longitudinal del flotador}}{\text{Radio de giro en cabeceo}}$  (5.3)

<sup>20</sup>ESTADOS UNIDOS. FEDERAL AVIATION ADMINISTRATION, Op. cit., p. 118

Si se toma el C.G. de un avión y se elige un sistema de coordenadas, en el que el eje Z sea hacia arriba, el eje Y hacia la derecha, y el eje X hacia delante, el *pitching moment of inertia* [momento de inercia en cabeceo] es sobre el eje Y. Richard Hiscocks, sugiere un valor de radio de giro en pitch de  $0,176*L_0$ , donde  $L_0$  es la longitud total de la aeronave<sup>21</sup>. Con base en este valor, se estimó el radio de giro para la Piper PA-18:

Radio de giro en pitch = 
$$0,176.L_{\circ}$$
(5.4)Radio de giro en pitch =  $0,176(271in)$  $\therefore$  Radio de giro en pitch =  $47,696$ 

Teniendo las distancias desde los CG delantero (FWD) y CG trasero (AFT) de la aeronave Piper PA-18 a las estaciones longitudinales del flotador en las que se calculan las cargas de aterrizaje de proa y popa\* columnas 2 y 3 cuadro 9, y el radio de giro en pitch, se evaluaron las  $r_x$  con la ecuación (5.3) columnas 5 y 6 cuadro 9. Donde,  $r_x$  c.g. FWD es la relación de distancias medidas desde el CG delantero y  $r_x$  c.g. AFT es la relación de distancias medidas desde el CG trasero.

Cuadro 9. Relación de distancia r<sub>x</sub>

| Cuaderna No.  | C.G. FWD (in) | C.G. AFT (in) | Radio de Giro (in) | r <sub>x C.G. FWD</sub> | r <sub>x C.G. AFT</sub> |
|---------------|---------------|---------------|--------------------|-------------------------|-------------------------|
| 1/5 Forebody  | 64,5          | 68,5          | 47,696             | 1,3523                  | 1,4362                  |
| 85% Afterbody | 109,4         | 105,4         | 47,696             | 2,2937                  | 2,2098                  |

Fuente: Autores.

<sup>&</sup>lt;sup>21</sup>D. HISCOCKS, Richard. Design of Light Aircraft. Canadá : Patricia Hiscocks, 1995. p. 123
\*Distancias medidas en Solid Edge ... véase anexo B ...

De las formulas (5.1) y (5.2) se calcularon los factores de reacción de agua para los casos de aterrizaje de rediente, proa y popa. Estos dos últimos se evaluaron con las relaciones de distancia  $r_{x C.G. FWD}$  y  $r_{x C.G. AFT}$  calculadas en el cuadro 9. Los resultados se muestran en la cuadro 10. Donde  $n_{W C.G. FWD}$  es el factor de reacción del agua evaluado con  $r_{x C.G. FWD}$  y  $n_{W C.G. AFT}$  es el factor de reacción del agua evaluado con  $r_{x C.G. FWD}$  y  $n_{W C.G. AFT}$  es el factor de reacción de agua evaluado con  $r_{x C.G. FWD}$  y  $n_{W C.G. AFT}$  es el factor de reacción de agua evaluado con  $r_{x C.G. FWD}$  y  $n_{W C.G. AFT}$  es el factor de reacción de agua evaluado con  $r_{x C.G. AFT}$ . De las columnas 6 y 7 del cuadro 10, se observa que el mayor  $n_{w}$  para el aterrizaje de Proa se da para el CG delantero y para el aterrizaje de Popa se da para el CG trasero.

Cuadro 10. Factores de reacción del agua n<sub>w</sub>

|                     | β       | <b>K</b> <sub>1</sub> | r <sub>x c.g. fwd</sub> | r <sub>x c.g. aft</sub> | n <sub>w C.G. FWD</sub> | <b>n</b> <sub>w C.G. AFT</sub> |
|---------------------|---------|-----------------------|-------------------------|-------------------------|-------------------------|--------------------------------|
| Bow landing cases   | 35,7943 | 1,37                  | 1,3523                  | 1,4362                  | 1,6683                  | 1,5823                         |
| Stern landing cases | 26,4797 | 0,9063                | 2,2937                  | 2,2098                  | 0,8315                  | 0,8668                         |
| Step landind cases  | 33,9594 |                       |                         |                         | r<br>2,5                | ι <sub>w</sub><br>491          |

Fuente: Autores.

Las cargas de agua se deben calcular para cada peso máximo de operación hasta el peso teórico de aterrizaje, excepto que, para la condición de decolaje, se debe usar el peso máximo para taxeo en agua y carrera de despegue.

Una vez determinados los factores de carga n<sub>w</sub>, estos se multiplicaron por la mitad de los pesos máximos de operación de la aeronave ... véase sección 3.1 ... y por un factor de seguridad de 1,5. Esto es así ya que en cada flotador se considera la mitad del peso de la aeronave. Estos valores se resumieron en el cuadro 11.

|                | W Lbf    | Factor de  | Bow Landing Cases (Lbf) |                       | Stern Landing Cases (Lbf) |                       | Step Landing Cases<br>(Lbf) |
|----------------|----------|------------|-------------------------|-----------------------|---------------------------|-----------------------|-----------------------------|
|                |          | Disello ij | n <sub>w CG FWD</sub>   | N <sub>W CG AFT</sub> | N <sub>W CG FWD</sub>     | n <sub>w CG AFT</sub> | n <sub>w</sub>              |
| Empty Weight   | 594      | 1,5        | 1486,4553               | 1409,8293             | 740,8665                  | 772,3188              | 2271,2481                   |
| Taxi Weight    | 861,9189 | 1,5        | 2156,9090               | 2045,7214             | 1075,0283                 | 1120,6670             | 3295,6762                   |
| Takeoff Weight | 858,4711 | 1,5        | 2148,2810               | 2037,5382             | 1070,7281                 | 1116,1841             | 3282,4930                   |
| Landing Weight | 692,5    | 1,5        | 1732,9466               | 1643,6141             | 863,7206                  | 900,3885              | 2647,8776                   |
| Gross Weight   | 875      | 1,5        | 2189,6438               | 2076,7688             | 1091,3438                 | 1137,6750             | 3345,6938                   |

Cuadro 11. Factores de cargas de agua evaluadas a diferentes pesos de operación, Piper PA-18.

Fuente: Autores.

En la aplicación de las cargas de agua, las Normas FAR Part 23, dicen que éstas cargas pueden distribuirse sobre el fondo del flotador, para evitar cargas cortantes y momentos de flexión excesivos en el punto de aplicación de la carga, usando presiones no menores que aquellas discutidas en ... Sección 23.533 de las FAR 23..., la cual habla sobre las presiones en el fondo del casco. El cálculo de estas presiones se contempla en la sección ... 5,3 ...

#### 5.2 ATERRIZAJES SIMETRICOS, ASIMETRICOS Y DISPOSICION DE CARGAS

5.2.1 Aterrizajes simétricos. Para aterrizajes simétricos de proa, rediente y popa las fuerzas externas son iguales a los factores límites de carga de agua calculados en la sección ... 5,1... multiplicados por el Peso Bruto de la aeronave y por un factor de seguridad de 1,5, es decir:

Landing load = 
$$n_w$$
\*Gross Weight\*1,5 (5.5)

El análisis estructural se desarrolló con base en Landing Load [cargas de aterrizaje] evaluadas con la mitad del Gross Weight de la aeronave Piper PA-18, puesto que con ese peso, es la condición más severa que deben resistir los flotadores.

Para aterrizajes simétricos de rediente, la carga de agua resultante debe ser aplicada en la quilla, a través del centro de gravedad, y debe ser dirigida perpendicularmente a la línea de quilla.

Para aterrizajes simétricos de proa, la carga de agua resultante se debe aplicar en la quilla, a un quinto de la distancia longitudinal desde la proa al rediente, y debe estar dirigida perpendicularmente a la línea de la quilla.

Para aterrizajes simétricos de popa, la carga de agua resultante debe ser aplicada en la quilla, al 85% de la distancia longitudinal desde el rediente a la popa, y debe estar dirigida perpendicular a la línea de la quilla.

Un resumen de las cargas de agua más altas para los casos de aterrizaje simétrico de proa, rediente y popa es presentado en el cuadro 12.

Cuadro 12. Cargas de aterrizaje simétrico más altas.

| Casos de Aterrizaje                         | Carga (Lbf) |
|---------------------------------------------|-------------|
| Carga de aterrizaje de Proa (1/5 forebody)  | 2189,6438   |
| Carga de aterrizaje de Rediente             | 3345,6938   |
| Carga de aterrizaje de Popa (85% afterbody) | 1137,6750   |

Fuernte: Autores

5.2.2 Aterrizaje asimétrico en hidroaviones de flotador doble. Las cargas asimétricas consisten de una carga ascendente aplicada en el rediente de cada flotador y de una carga lateral aplicada en un flotador, dirigida hacia dentro, perpendicularmente al plano de la simetría situado en la mitad entre la quilla y las líneas de arista del flotador, en la misma estación longitudinal que la carga ascendente. Los valores para la carga ascendente y lateral son:

Carga Ascendente = 0,75(Step Landing Load) (5.6) Carga Ascendente = 0,75(3345,6938Lbf) = 2509,2704Lbf ∴ Carga Ascendente = 2509,2704Lbf

# Carga Lateral = 0,25.Tan $\beta$ (Step landing load) (5.7) Carga Lateral = (0,25)(Tan 33,9594)(3345,6938Lbf) = 563,3128Lbf $\therefore$ Carga Lateral = 563,3128Lbf

# 5.3 PRESIONES EN EL FONDO DEL FLOTADOR

La estructura del flotador, incluyendo cuadernas, stringers, y *recubrimientos* inferiores, se diseñaron bajo esta sección.

5.3.1 Presiones locales. Para el diseño de *recubrimientos* inferiores, stringers y sus accesorios a la estructura de apoyo, se aplicaron las siguientes distribuciones de presión:

Para un *fondo* no *acampanado*, la presión en la arista del flotador es 0,75 veces la presión en la quilla, y las presiones entre la quilla y la arista varían linealmente, de acuerdo con la Figura 27. La presión en la quilla en p.s.i. es:

$$\mathsf{P}_{\mathsf{K}} = \frac{\mathsf{C}_{2}\mathsf{K}_{2}\mathsf{V}_{\mathrm{S1}}^{2}}{\mathrm{Tan}\,\beta_{\mathsf{K}}}$$
(5.8)

Donde,  $P_k$  = presión en la quilla (p.s.i.);

 $C_2 = 0,00213$ 

K<sub>2</sub> = Factor de peso de la estación de casco, de acuerdo con la Figura 25.

 $V_{S1}$  = Velocidad de perdida del hidroavión (nudos) en el peso teórico de despegue del agua con flaps extendidos en la posición apropiada de despegue, igual a 42,1038*KT* 

 $B_{K}$  = Angle of Dead Rise at keel [ángulo de Dead Rise en la quilla], véase figura 26.

Figura 26. Definición de ángulos en el fondo del flotador.



Fuente: Apéndice I, FAR Part 23 - Seaplane loads





Fuente: Apéndice I, FAR Part 23 - Seaplane loads

Para un *fondo acampanado*, la presión al comienzo del acampanamiento es la misma que aquella para un fondo no acampanado, y la presión entre la arista y el comienzo del acampanamiento varia linealmente, de acuerdo con la Figura 27. La distribución de presión es igual a la descrita anteriormente para un fondo no acampanado, excepto que la presión en la arista se calcula de la siguiente forma:

$$P_{ch} = \frac{C_3 K_2 V_{S1}^2}{Tan\beta}$$
(5.9)

Donde, P<sub>ch</sub> = presión en la arista (p.s.i.)

 $C_3 = 0,0016$ 

K<sub>2</sub> = Factor de peso de la estación del casco, de acuerdo con la figura 29.

 $V_{S1}$  = Velocidad de perdida del hidroavión (nudos) con el peso teórico de despegue del agua flaps extendidos en la posición apropiada de despegue, igual a 42,1038*KT* 

 $\beta$  = Ángulo de Dead Rise en la estación apropiada.

El área sobre la cual estas presiones son aplicadas debe simular las presiones que ocurren durante altos impactos localizados sobre el casco o flotador, pero no se necesitan extender sobre un área que induciría esfuerzos críticos en las cuadernas o en la estructura total.

5.3.2 Presiones distribuidas. Para el diseño de la estructura de arista, quilla y cuadernas se aplicaron las siguientes distribuciones de presión:

Las presiones simétricas son calculadas a continuación:

$$P = \frac{C_4 K_2 V_{s0}^2}{Tan\beta}$$
(5.10)

Donde, P = presión (p.s.i.);

C<sub>4</sub> = 0,078 C1

K<sub>2</sub> = Factor de peso de la estación del casco, determinado de acuerdo con la sección 28.

 $V_{S0}$  = velocidad de perdida del hidroavión (nudos) con flaps de aterrizaje extendidos en la posición apropiada y sin efecto de torbellino de la hélice, igual a 37,1032 KT

 $\beta$  = ángulo de Dead Rise en la estación apropiada.

La *distribución asimétrica de presión* consiste en la presión calculada con la ecuación (5.10), donde sobre un lado de la línea central del flotador se ejerce la presión completa y sobre el otro extremo la mitad de esa presión, de acuerdo con la figura 27.

Estas presiones son uniformes y se deben aplicar simultáneamente sobre todo fondo del flotador. Las cargas obtenidas deben ser portadas en la estructura lateral (Sidewall Structure) del casco, pero no necesitan ser transmitidas en una dirección a proa y popa como cargas de flexión y cortante.

Los valores de las presiones en la quilla  $P_{K}$ , presión en la arista  $P_{CH}$  y presión distribuida P, se sintetizaron en el cuadro 13.

| Presiones en el fondo del flotador (p.s.i.) |                |         |           |                |          |        |
|---------------------------------------------|----------------|---------|-----------|----------------|----------|--------|
| Cuaderna #                                  | K <sub>2</sub> | β       | $\beta_k$ | P <sub>k</sub> | $P_{ch}$ | Р      |
| 1                                           | 1,9068         | 43,1306 | 52,5354   | 5,5176         | 5,7733   | 2,7511 |
| Bow Load                                    | 1,5            | 35,7943 | 44,6459   | 5,7343         | 5,9003   | 2,8116 |
| 2                                           | 1,1545         | 34,1375 | 43,2063   | 4,6412         | 4,8297   | 2,3015 |
| 3                                           | 0,7645         | 33,7668 | 42,8447   | 3,1125         | 3,2432   | 1,5454 |
| 4                                           | 0,8154         | 33,8986 | 42,9412   | 3,3085         | 3,4420   | 1,6402 |
| Step Load                                   | 0,9762         | 33,9594 | 42,9873   | 3,9546         | 4,1113   | 1,9591 |
| 5                                           | 0,9415         | 33,9388 | 42,97     | 3,8163         | 3,9682   | 1,8909 |
| MM                                          | 1              | 33,8861 | 42,9276   | 4,0594         | 4,2232   | 2,0124 |
| MM-A                                        | 1              | 30,97   | 40,1191   | 4,4810         | 4,7261   | 2,2521 |
| 6                                           | 0,5503         | 29,3901 | 38,2588   | 2,6350         | 2,7712   | 1,3205 |
| 7                                           | 0,6619         | 26,4051 | 35,5864   | 3,4927         | 3,7811   | 1,8018 |
| 8                                           | 0,8232         | 25,8688 | 35,1751   | 4,4104         | 4,8152   | 2,2945 |
| Stern Load                                  | 0,925          | 26,4797 | 35,9765   | 4,8115         | 5,2669   | 2,5098 |
| 9                                           | 1              | 26,8869 | 36,5548   | 5,0927         | 5,5940   | 2,6656 |

Cuadro 13. Presiones en el Fondo del Flotador.

Fuente: Autores.

### 6. ANALISIS ESTRUCTURAL.

En este capitulo se elaboró el análisis estructural de los flotadores: reacciones en los puntos de sujeción del montante, diseño de struts, tortillería, flujo de cortadura, fittings, pieles inferiores, soportes, stringer y cuadernas. Para este análisis se hicieron una serie de suposiciones, como es la idealización de la estructura basándose en que un análisis exacto de la misma por lo general no es posible ya que sus componentes no se comportaran simétricamente; qué las propiedades del material son elásticos lineales, que la estructura del montante y los flotadores es simétrica; la omisión del estudio aerodinámico e hidrodinámico, por consiguiente se lleva la estructura a una situación manejable para el calculo, teniendo presente las condiciones críticas estructurales. Para obtener un criterio de diseño razonable se concluye el análisis, con la ayuda del programa Algor, el cual esta basado en la teoría de los elementos finitos.

Es de resaltar que la función del ingeniero aeronáutico es proyectar y/o calcular la estructura con las cargas máximas esperadas en la operación, aplicando los conceptos de resistencia de materiales, para lograr que el esfuerzo que se produce en el material del componente no sobrepase las propiedades mecánicas del mismo y garantice un nivel de seguridad óptimo.

En primera instancia, con las cargas de aterrizaje calculadas en el capitulo 5, véase ... numeral 5.2.1 y 5.2.2 ..., y por medio del programa Algor, se determinaron los esfuerzos sobre el flotador, y las reacciones en los puntos de sujeción de los struts a el flotador, para cada caso de aterrizaje. Con estas reacciones, se calcularon las fuerzas axiales de los struts y las reacciones en los puntos de apoyo de éstos al fuselaje, para cada caso de aterrizaje.

El diseño de los struts, se llevo a cavo con las fuerzas axiales más altas. La tortillería para los puntos de unión entre el flotador y el fuselaje a los soportes se diseño con las mayores reacciones. Los tornillos pasadores que unen los soportes con los fitting se calcularon con los esfuerzos axiales más altos de los strut involucrados.

El flujo de cortadura fue analizado en solo cuatro cuadernas del flotador, que se consideran las más críticas. Los fitting fueron se verificaron por cuatro tipos de falla: por corte, apoyo, desgarre y tensión. Las pieles inferiores, stringer y cuadernas fueron analizadas con las presiones discutidas en la ... sección 5.3...

# 6.1 CONSIDERACIONES Y DEFINICIONES BÁSICAS EN RESISITENCIA DE MATERIALES

Para el diseño de cualquier producto, maquina o estructura se debe garantizar que este cumpla con los requerimientos para lo cual se ha diseñado, teniendo en cuenta las cargas a las que el producto se encontrará sometido para que este pueda asumir un funcionamiento óptimo.

Existen tres situaciones en la que un elemento o producto diseñado puede llegar a colapsar estructuralmente. A continuación se aclara brevemente cada una de ellas:

6.1.1 *Fractura.* Cuando una fuerza es aplicada a un componente, el material asignado para el diseño debe ser capaz de soportar las cargas a la que va hacer sometido, de no cumplir con esta cualidad, el material del componente tiende a fracturarse completamente.

6.1.2 **Deformación.** Es el cambio en dimensión de una pieza al aplicarle una carga. Debe cuidarse que las propiedades mecánicas de la pieza no se sobrepasen, ya que si se excede el límite de deformación elástica del material de la pieza, quedaría deformada permanentemente.

6.1.3 **Estabilidad y Pandeo**. Una estructura puede colapsar por causa de que alguno de sus apoyos más importantes no mantengan la forma en una situación de carga aplicada. Se puede tomar como ejemplo una viga vertical recibiendo una carga a compresión en dirección hacia abajo, haciendo que la fuerza tienda a pandear la viga o haciéndola que pierda su estado original, para situaciones criticas con cargas aplicadas constantes la viga se colapsaría y por consiguiente la estructura se desplomaría.

Figura 28. Columna en compresión que ilustra el pandeo.



Fuente: Resistencia de Materiales Aplicada

Para evitar esta situación se recomienda a los fabricantes, la especificación del material, forma y tamaños apropiados de las secciones transversales que se encuentran sometidas a fuerzas de compresión.

6.1.4 Concepto de esfuerzo. *"Esfuerzo es la resistencia interna que ofrece un área unitaria del material del que está hecho un miembro para una carga aplicada externa"*<sup>22</sup>, la importancia de la frase descrita está totalmente ligada al interés de las fuerzas que actúan interiormente en cada unidad de área, preocupándose en la seguridad que puede brindar un diseño estructural. De la anterior definición se desprende la siguiente formula:

$$\text{Esfuerzo}(\sigma) = \frac{\text{Fuerza}}{\text{Área}} = \frac{F}{A}$$
(6.1)

<sup>&</sup>lt;sup>22</sup>MOTT, L. Robert. Resistencia de materiales aplicada. 3 ed. Mexico : Prentice-Hall Hisponamericana, 1996. 9 p.

6.1.5 Esfuerzo normal directo. Se denomina esfuerzo normal directo a la carga aplicada de forma perpendicular al área transversal del componente a el cual se le calcula el esfuerzo, cumpliendo uniformidad del esfuerzo sobre el área de resistencia. Este esfuerzo normal directo puede ser de compresión o de tensión, cuando el esfuerzo es a comprensión el material del componente tiende a ser aplastado produciendo corte en el mismo, y cuando el esfuerzo es a tensión el material tiende a romperse por estiramiento sus fibras, la Figura 29 ilustra estos hechos.

Figura 29. Esfuerzo directo de tensión y compresión.



Fuente: Resistencia de materiales aplicada.

6.1.6 Esfuerzo cortante directo. Se conoce como esfuerzo cortante a la fuerza que es aplicada a una determinada área del componente, haciendo que el material obtenga una fractura o corte directo.

Esfuerzo cortante (
$$\tau$$
) =  $\frac{\text{Fuerza aplicada}}{\text{Area cortante}} = \frac{F}{A}$  (6.2)

Cuando queremos obtener una ranura en el algún punto del componente o un corte por perforación, deberemos saber la longitud del perímetro de la forma cortada y esta multiplicarla por el espesor de la lámina.

$$A_{s} = Perímetro * espesor = p * t$$
(6.3)

Existen dos situaciones de corte dependiendo del número de áreas que se vean afectadas, a continuación explicaremos brevemente cada situación:

\* **Corte Simple.** Cuando se introduce un perno, remache o pasador donde se ve afectada solo el área de una sección transversal, se denominara esfuerzo cortante simple, lo que produce el corte de su área transversal es la fuerza aplicada perpendicularmente al eje del pasador. Despejando el área de la ecuación (6.2):

$$A = \frac{F}{\tau} \tag{6.4}$$

$$A_{\text{CIRCULO}} = \pi * R^2 \tag{6.5}$$

$$\tau_{ADM.MAT.CORTE} = 0.25 * \sigma_{ADM.MAT}$$
(6.6)

Reemplazando (6.5) y (6.6) en (6.4):

$$\pi(R)^{2} = \frac{F}{\tau_{ADM.MAT.CORTE}} \implies R = \sqrt{\frac{F}{\pi * \tau_{ADM.MAT.CORTE}}}$$
(6.7)

| Donde, F                                         | = | Fuerza cortante                         |
|--------------------------------------------------|---|-----------------------------------------|
| R                                                | = | Radio                                   |
| τ                                                | = | Esfuerzo cortante                       |
| $	au_{\textit{ADM}.\textit{MAT}.\textit{CORTE}}$ | = | Tensión admisible del material en corte |
| $\sigma_{_{ADM.MAT}}$                            | = | Esfuerzo admisible del material         |

Figura 30. Ilustración de corte simple.



Fuente: Resistencia de materiales aplicada.

\* **Corte Doble.** En el corte doble se aplica la misma teoría que en el corte simple, pero se debe tener en cuenta que en esta ocasión se ven afectadas dos áreas, siendo así dos secciones transversales tenidas en cuenta para el desarrollo de la formula. De la ecuación (6.7):

Figura 31. Ilustración de corte doble.



Fuente: Resistencia de Materiales Aplicada.

$$2 * \pi(R)^{2} = \frac{F}{\tau_{ADM.MAT.CORTE}} \implies R = \sqrt{\frac{F}{2 * \pi * \tau_{ADM.MAT.CORTE}}}$$
(6.8)

Donde, F = Fuerza cortante R = Radio  $\tau_{ADM.MAT.CORTE}$  = Tensión admisible del material en corte

6.1.7 Concepto de deformación. Conocida también como deformación unitaria, sucede por la influencia de carga aplicada a un miembro o componente, haciendo que el material cambie su forma inicial. Las deformaciones de una estructura sometida a carga se deben calcular y limitar en el diseño, según la aplicación a la que vaya a ser sometida. La letra con que se designó fue épsilon ( $\varepsilon$ ), y es igual a la deformación total de la pieza entre la longitud original de la misma.

Deformación = 
$$\varepsilon = \frac{\text{Deformación total}}{\text{longuitud original}}$$
 (6.9)

6.1.8 Modulo de elasticidad. Cuando queremos obtener el valor de rigidez de un material hablamos del Modulo de Elasticidad, este se calcula teniendo en cuenta el esfuerzo normal de un elemento trabajando a tensión o compresión entre la deformación correspondiente del mismo. Con un valor de *E* alto existe una deformación menor para un esfuerzo dado con un valor de *E* bajo.

$$E = \frac{\sigma}{\varepsilon} \tag{6.10}$$

Donde, E = Modulo de Elasticidad

 $\sigma$  = Esfuerzo Normal

 $\varepsilon$  = Deformación

6.1.9 Momento de inercia. Es la resistencia que un cuerpo en rotación opone al cambio de su velocidad de giro. El momento de inercia de un componente depende de su masa y de la distancia que ésta tenga al eje de rotación. El momento de inercia no es una cantidad única y fija, ya que al rotar el componente en un eje distinto la distribución de su masa con relación al nuevo eje varía.

6.1.10 Tubos. Los tubos o secciones circulares huecas, son muy eficientes para utilizarlas como vigas, miembros de torsión y columna. La colocación uniforme del material lejos del centro del tubo aumento el momento de inercia para una cantidad dada de material. La forma cerrada de su sección transversal le da un alto grado resistencia y de rigidez a la torsión como a la flexión.

6.1.11 Concepto de los elementos finitos. A continuación se discutirán brevemente algunos elementos esenciales del Análisis por Elementos Finitos (FEA), señalando los aspectos que en los análisis e interpretación de resultados se tuvieron en cuenta en la verificación de las partes diseñadas.

El método de los elementos finitos es una herramienta poderosa que la ingeniería tiene para el análisis de un amplio rango de problemas en los diversos campos de ésta. Este método se aplica en el análisis térmico, de vibraciones, flujo de fluidos, electrostático y tuberías.

## Elementos esenciales del Análisis por Elementos Finitos FEA

El FEA es una aproximación numérica que se usa para resolver los problemas de ingeniería, basado en las formulas de los manuales de ingeniería y cálculos a mano con los que los ingenieros han acostumbrado validar su trabajo tradicionalmente. La Diferencia primaria entre los métodos clásicos y elementos finitos es:

• El método clásico considera a las estructuras como un continuo cuyo comportamiento es gobernado por ecuaciones diferenciales ordinarias o parciales.

• El método del elemento finito considera un dominio de estudio en la estructura para ser ensamblada en partículas finitas de tamaño pequeño.

El comportamiento de estas partículas y de la estructura total es obtenido al formular un sistema de ecuaciones algebraicas que pueden ser fácilmente resueltas con el uso del computador. Las partículas finitas de tamaño pequeño son llamadas elementos finitos.

Los puntos donde los elementos finitos son interconectados se llaman nodos o puntos nodales. El método para el análisis consiste en una discretización en simples formas geométricas llamadas Elementos Finitos.

Un nodo es la localización de una coordenada en el espacio donde los DOF son definidos. Los DOF (Degree of Freedom) son los grados de libertad en traslación y rotación sobre los tres ejes coordenados. Los DOF de un punto representan el movimiento posible del mismo debido a la(s) carga(s) de la estructura.

Un elemento es una relación matemática que define como los grados de libertad de un nodo relaciona al siguiente. Estos elementos pueden ser líneas (vigas), áreas (placas 2-d o 3-d) o sólidos (ladrillo). Este también relaciona cómo las desviaciones crean esfuerzos.

Las condiciones de frontera o restricciones representan la forma como está apoyado el modelo geométrico, se refieren a la delimitación que de las posibilidades de desplazamiento o deformación en una o en otra dirección se hace a la geometría para poder analizarla. Las condiciones o límites de frontera, no son más que la restricción de los posibles Grados de Libertad (DOF = Degree Of Freedom) disponibles en la estructura.

Un modelo de elemento finito es una representación discreta de la parte continua física que está analizándose. La representación discreta se refiere a la discretización y/o linealización que el programa hace en las geometrías para poderlas analizar. Esta representación discreta se genera usando nodos y elementos. Los nodos son los puntos de conexión para formar los elementos. Los nodos son los puntos discretos en la parte física dónde el análisis predice las respuestas de la parte en cuestión debido a las cargas aplicadas. Esta respuesta se define mediante los grados nodales de libertad (DOF). Para el análisis de esfuerzos, seis grados de libertad son posibles en cada nodo (tres componentes de traslación y tres componentes de rotación). Dependiendo del tipo del elemento seleccionado (por ejemplo, viga, placa, Elementos en 2-D y/o 3-D, etc.), se determina el número de grados requeridos de libertad para cada nodo.

Figura 32. Conceptos de discretización.



Fuente: Guía No.3. Conceptos básicos – Análisis estático Lineal. Sena Centro Colombo Italiano.

La retícula de elementos que une a los nodos comunes comprende la malla.

Determinar si el elemento estará sometido a condiciones estáticas o dinámicas es el primer paso para hacer cualquier tipo de análisis de esfuerzos. Entre las opciones de análisis que ofrece Algor, las partes del flotador fueron estudiadas con análisis estático lineal de esfuerzos. Aunque en realidad el flotador de una aeronave esta sometido a cargas de impacto, estos eventos es posible analizarlos de forma estática, puesto que las cargas de aterrizaje se presentan espaciadas en el tiempo, y no se repiten constantemente en intervalos cortos de tiempo.

Las opciones de análisis en el modelamiento determinan cuan fácil es interpretar los resultados. Por ejemplo, si se hace un análisis estático lineal de esfuerzos, un perfil en un solo instante estará disponible. Los esfuerzos mostrados tienen que ser interpretados de alguna manera, tal como comparar los valores con el esfuerzo de fluencia del material usado en el modelo.
En el programa Algor se consideran tres fases: Pre-procesador, Procesador y Post-procesador. En la primera etapa, la geometría del modelo es discretizada utilizando un preprocesador de dibujo, es decir el modelo es dividido en elementos finitos generándose una maya. En esta fase el usuario interviene, asignando la calidad del enmallado, en la aplicación externa de fuerzas concentradas, fuerzas uniformes y/o distribuidas, y momentos, definiendo las condiciones de frontera, materiales y seleccionando el tipo de análisis. Las dos fases restantes son automáticamente ejecutadas por el software del computador. En la etapa de Procesador, se formula un sistema de ecuaciones algebraicas que pueden ser fácilmente resueltas con el uso del computador. El programa calcula los esfuerzos, reacciones u otra información pertinente al post-procesador. La salida de los resultados puede ser gráfica o como texto

### 6.2 CALCULO DE LAS REACCIONES EN LOS PUNTOS DE SUJECIÓN DEL FLOTADOR

A continuación se calcularon las reacciones a las que estarán sometidos los puntos de sujeción de los flotadores con los struts. Para el cálculo de las reacciones de los puntos de sujeción A y B de los flotadores, se dibujó el diagrama de cuerpo libre de un flotador, idealizándolo como un elemento rígido. Estos puntos de sujeción a los strut fueron analizados como apoyos de tipo pasador.





Fuente: Autores

Se tomaron en cuenta, los casos en que el flotador se encuentra sometido a las mayores cargas de agua de aterrizaje\*, siendo aplicadas en tres partes fundamentales como lo son la Proa, Paso y Popa, donde cada una se analizó por aparte para así obtener las reacciones más altas para cada caso. Estas reacciones se determinaron haciendo uso del programa *Algor*.

Para las figuras 33,41, 47 y 55 las flechas de color amarillo representan las componentes de las cargas de agua, y los círculos de color rojo los apoyos de tipo pasador. Los casos de aterrizaje simétrico de proa, rediente y popa se analizaron de forma bidimensional en le plano Y-X, mientras que la condición de aterrizaje asimétrico fue considerada en el plano Z-X.

6.2.1 Carga de aterrizaje en la proa

Figura 34. Diagrama de carga de agua para el caso de aterrizaje en la proa (Algor).



<sup>\*</sup>Cargas calculadas en las secciones ... 5.2.1 y 5.2.2 ... multiplicadas por 0.8





Fuente: Autores.

**Sólido libre.** Las reacciones en A y B se determinaron en el programa Algor, considerando el flotador como un sólido rígido, obteniendo las reacciones mostradas en el cuadro 14.

| Reacciónes en A y B para el Caso de Aterrizaje en Proa              |        |          |  |
|---------------------------------------------------------------------|--------|----------|--|
| R <sub>AX</sub> (Lbf)                                               |        | -61,14   |  |
| RAY (Lbf)                                                           |        | -2626,75 |  |
| R AZ (Lbf)                                                          | 0      |          |  |
| R вх (Lbf)                                                          | 0      |          |  |
| R вү (Lbf)                                                          | 875,85 |          |  |
| R вz (Lbf)                                                          | 0      |          |  |
| $\sum$ Vectorial para $R_A$ (Lbf) $\sum$ Vectorial para $R_B$ (Lbf) |        |          |  |
| 262                                                                 | 875,85 |          |  |

Cuadro 14. Reacciones en A y B para el caso de carga en proa.

Fuente: Autores.

Figura 36. Diagrama de solidó libre para el caso de aterrizaje en la proa.



Fuente: Autores

*Fuerza cortante y momento flector. P*ara el análisis de los esfuerzos cortantes y momentos flectores se hicieron cuatro cortes considerando un diagrama de sólido de libre para cada corte, se determinaron las fuerzas internas a la izquierda de cada sección, suponiendo que V y M son positivos en las direcciones mostradas.

Figura 37. Sección de corte Nº 1 (Proa)



Fuente: Autores

Sección 1:

$$+ \uparrow \sum F_{Y} = 0: \qquad 0 - \forall = 0 \qquad \therefore V_{1} = 0$$
$$\uparrow \downarrow F_{Y} = 0: \qquad 0 + \mathsf{M}_{(X)} = 0 \qquad \therefore \mathsf{M}_{1} = 0$$

Figura 38. Sección de corte Nº 2 (Proa)



Fuente: Autores

Sección 2:

$$+\uparrow \sum F_Y = 0:$$
 (Sen 88)(1752Lbf) – V = 0

:  $V_2 = 1750,9Lbf$ 

+ 
$$\sum M = 0$$
: - (Sen 88)(1752Lbf)(X - 23,3425in) + M<sub>(X)</sub> = 0  
∴ M<sub>2</sub> = (1750,9X - 40871,15)Lbf.in

Figura 39. Sección de corte Nº 3 (Proa)

Fuente: Autores

Sección 3:

$$+\uparrow \sum F_{Y} = 0:$$
 (Sen 88)(1752Lbf) – 2626,8Lbf –V = 0

 $\therefore V_3 = -875,9Lbf$ 

+
$$\sum M = 0$$
: - (Sen 88)(1752Lbf)(X - 23,3425in) + (2626,8Lbf)(X - 57,6811in) + M<sub>(X)</sub> = 0  
∴ M<sub>3</sub> = (-875,9X + 110645,6)Lbf.in

Figura 40. Sección de corte Nº 4 (Proa)



Sección 4:

+ ↑ 
$$\sum F_Y = 0$$
: (Sen 88)(1752Lbf) - 2626,8Lbf + 875,9Lbf -V = 0  
∴  $V_4 = 0$   
+  $\sum M = 0$ : - (Sen 88)(1752Lbf)(X - 23,3425in) + (2626,8Lbf)(X - 57,6811in) - (875,9Lbf)(X - 126,3268in) + M<sub>(X)</sub> = 0  
∴ M<sub>4</sub> = 0

*Diagramas de fuerza cortante y momento flector.* La fuerza cortante es constante y el momento flector varía linealmente, por tanto se obtuvieron los diagramas de fuerza cortante y momento flector que se muestran.



Figura 41. Diagrama de cortantes y momentos flectores para el caso de aterrizaje en la proa.

## 6.2.2 Carga de agua de aterrizaje en el paso (C.G.)

Figura 42. Diagrama de carga de agua para el caso de aterrizaje en el paso (C.G) (Algor).



Fuente: Autores.



Figura 43. Diagrama de carga de agua para el caso de aterrizaje en el paso (C.G).

Fuente: Autores

**Sólido libre.** Las reacciones en A y B se determinaron en el programa Algor, considerando el flotador como un sólido rígido, obteniendo las reacciones mostradas en la Cuadro 15:

Cuadro 15. Reacciones en A y B para el caso de carga en el paso (C.G).

| Reacciónes en A y B para el Caso de Aterrizaje en el Paso (C.G) |                         |                             |  |  |  |
|-----------------------------------------------------------------|-------------------------|-----------------------------|--|--|--|
| R <sub>AX</sub> (Lbf)                                           | -63,0581                |                             |  |  |  |
| RAY (Lbf)                                                       |                         | -1805,83                    |  |  |  |
| R AZ (Lbf)                                                      | 0                       |                             |  |  |  |
| R вх (Lbf)                                                      | -53,7119                |                             |  |  |  |
| R вү (Lbf)                                                      | -1538,17                |                             |  |  |  |
| R вz (Lbf)                                                      | R <sub>BZ</sub> (Lbf) 0 |                             |  |  |  |
| ∑ Vectorial pa                                                  | ara R ₄ (Lbf)           | ∑ Vectorial para R  B (Lbf) |  |  |  |
| 1806,93                                                         |                         | 1539,11                     |  |  |  |

Fuente: Autores.

Figura 44. Diagrama de solidó libre para el caso de aterrizaje en el paso (C.G).



Fuente: Autores

*Fuerza cortante y momento flector. P*ara el análisis de de los esfuerzos cortantes y momentos flectores se hicieron dos cortes considerando un diagrama de sólido de libre para cada corte, se determinaron las fuerzas internas a la izquierda de cada sección, suponiendo que V y M son positivos en las direcciones mostradas.

Figura 45. Sección de corte Nº 1 (Paso)



Fuente: Autores

Sección 1:

$$+\uparrow \sum F_{Y} = 0:$$
 - 1805,8Lbf - V = 0

 $\therefore V_1 = -1805, 8Lbf$ 

$$f + \sum M = 0$$
: (1805,8Lbf) (X) + M<sub>(X)</sub> = 0

 $\therefore$  M<sub>1</sub> = -(1805,8 \* X)Lbf.in

Figura 46. Sección de corte Nº 2 (Paso)



Sección 2:

+ ↑ 
$$\sum F_Y = 0$$
: - 1805,8Lbf + (Sen 88) (3346Lbf) -V = 0  
∴  $V_2 = 1538,2Lbf$   
↑ +  $\sum M = 0$ : (1805,8Lbf)(X) - (Sen 88)(3346Lbf)(X - 31,5760in) + M<sub>(X)</sub> = 0  
∴ M<sub>2</sub> = (1538,2X - 105590)Lbf.in

*Diagramas de fuerza cortante y momento flector.* La fuerza cortante es constante y el momento flector varía linealmente, por tanto se obtuvieron los diagramas de fuerza cortante y momento flector que se muestran.



Figura 47. Diagrama de cortantes y momentos flectores caso de aterrizaje en el paso

## 6.2.3 Carga de agua de aterrizaje en la popa

Figura 48. Diagrama de carga de agua para el caso de aterrizaje en la popa (Algor).



Fuente: Autores.

Figura 49. Diagrama de carga de agua para el caso de aterrizaje en la popa.



Fuente: Autores.

**Sólido libre.** Las reacciones en A y B se determinaron en el programa Algor, considerando el flotador como un sólido rígido, obteniendo las reacciones mostradas en el cuadro 16.

Cuadro 16. Reacciones en A y B para el caso de carga en popa.

| Reaccióne                                                           | Reacciónes en A y B para el Caso de Aterrizaje en Popa |         |  |  |  |  |
|---------------------------------------------------------------------|--------------------------------------------------------|---------|--|--|--|--|
| RAX (Lbf)                                                           |                                                        | 0       |  |  |  |  |
| RAY (Lbf)                                                           | 941,658                                                |         |  |  |  |  |
| R AZ (Lbf)                                                          | 0                                                      |         |  |  |  |  |
| R вх (Lbf)                                                          | 110,9                                                  |         |  |  |  |  |
| R вү (Lbf)                                                          | -1844,98                                               |         |  |  |  |  |
| R вz (Lbf)                                                          | 0                                                      |         |  |  |  |  |
| $\sum$ Vectorial para $R_A$ (Lbf) $\sum$ Vectorial para $R_B$ (Lbf) |                                                        |         |  |  |  |  |
| 941,658 1848,31                                                     |                                                        | 1848,31 |  |  |  |  |

Fuente: Autores.

Figura 50. Diagrama de solidó libre para el caso de aterrizaje en la popa.



Fuente: Autores.

*Fuerza cortante y momento flector. P*ara el análisis de de los esfuerzos cortantes y momentos flectores se hicieron cuatro cortes considerando un diagrama de sólido de libre para cada corte, se determinaron las fuerzas internas a la izquierda de cada sección, suponiendo que V y M son positivos en las direcciones mostradas.

Figura 51. Sección de corte Nº 1 (Popa)



Fuente: Autores.

Sección 1:

$$+\uparrow \sum F_{Y} = 0: \qquad 0 - \mathsf{V} = 0 \qquad \therefore V_{1} = 0$$

$$f + \sum M = 0: \qquad 0 + M_{(X)} = 0 \qquad \therefore M_1 = 0$$

Figura 52. Sección de corte Nº 2 (Popa)



Fuente: Autores.

Sección 2:  
+ 
$$\uparrow \sum F_{Y} = 0$$
: 941,7Lbf – V = 0  
 $\land \uparrow + \sum M = 0$ : - (941,7Lbf)(X - 57,6811

 $\therefore V_2 = 941,7Lbf$ 

Figura 53. Sección de corte Nº 3 (Popa)



Fuente: Autores.

Sección 3:

$$+\uparrow \sum F_{y} = 0:$$
 941,7Lbf - 1845Lbf -V = 0

 $\therefore V_3 = -903,3Lbf$ 

+ 
$$\sum M = 0$$
: - (941,7Lbf)(X - 57,6811in) + (1845Lbf)(X - 126,3268in) + M<sub>(X)</sub> = 0  
∴ M<sub>3</sub> = (-903,3X + 178754,7)Lbf.in

Figura 54. Sección de corte Nº 4 (Popa)



Sección 4:

$$+\uparrow \sum F_z = 0:$$
 941,7Lbf - 1845Lbf + (Cos 7)(910,1Lbf) - V = 0

 $\therefore V_4 = 0$ 

+) 
$$\sum M = 0$$
: - (941,7Lbf)(X -57,6811in) + (1845Lbf)(X - 126,3268in) - (Cos 7)(910,1Lbf)(X - 197,8858in) + M<sub>(X)</sub> = 0

 $\therefore M_4 = 0$ 

*Diagramas de fuerza cortante y momento flector.* La fuerza cortante es constante y el momento flector varía linealmente, por tanto se obtuvieron los diagramas de fuerza cortante y momento flector que se muestran.





Fuente: Autores

## 6.2.4 Carga de agua de aterrizaje asimétrico



Figura 56. Diagrama de carga de agua para el caso de aterrizaje asimétrico (Algor).

Fuente: Autores.



Figura 57. Diagrama de carga de agua para el caso de aterrizaje asimétrico.

Fuente: Autores.

**Sólido libre.** Al igual que en los casos anteriores las reacciones en A y B se determinaron con el programa Algor, obteniendo las reacciones mostradas en el cuadro 17.

| Reacciónes en                                                      | Reacciónes en A y B para el Caso de Aterrizaje Asimétrico |          |  |  |  |
|--------------------------------------------------------------------|-----------------------------------------------------------|----------|--|--|--|
| R AX (Lbf)                                                         | 0                                                         |          |  |  |  |
| R AY (Lbf)                                                         |                                                           | -351,284 |  |  |  |
| R AZ (Lbf)                                                         | 30,0291                                                   |          |  |  |  |
| R вх (Lbf)                                                         | 0                                                         |          |  |  |  |
| R вү (Lbf)                                                         | -2157,99                                                  |          |  |  |  |
| R вz (Lbf)                                                         | 533,284                                                   |          |  |  |  |
| $\sum$ Vectorial para $R_A$ (Lbf) $\sum$ Vectorial para $R_B$ (Lbf |                                                           |          |  |  |  |
| 352,565 2222,9                                                     |                                                           | 2222,9   |  |  |  |

Cuadro 17. Reacciones en A y B para el caso de carga asimétrica.

Fuente: Autores.

Figura 58. Diagrama solidó libre para el caso de aterrizaje asimétrico.





*Fuerza cortante y momento flector. P*ara el análisis de de los esfuerzos cortantes y momentos flectores se hicieron dos cortes considerando un diagrama de sólido de libre para cada corte, se determinaron las fuerzas internas a la izquierda de cada sección, suponiendo que V y M son positivos en las direcciones mostradas.

Figura 59. Sección de corte Nº 1 (Asimétrico).





Sección 1:

$$+\uparrow \sum F_{Y} = 0:$$
 - 351,284Lbf - V = 0

 $\therefore V_1 = -351,284Lbf$ 

$$f + \sum M = 0$$
: (351,284Lbf) (X) + M<sub>(X)</sub> = 0

$$\therefore$$
 M<sub>1</sub> = - (351,284 \* X)Lbf.in

Figura 60. Sección de corte Nº 2 (Asimétrico).



Fuente: Autores

Sección 2:

+ ↑ 
$$\sum F_Y = 0$$
:  
- 351,284Lbf + 2509,27Lbf -V = 0  
 $\therefore V_2 = 2157,99Lbf$   
) +  $\sum M = 0$ :  
(351,284Lbf)(X) - (2509,27Lbf)(X - 59,0355in) + M<sub>(X)</sub> = 0  
 $\therefore M_2 = (2157,99X - 148136)Lbf.in$ 

*Diagramas de fuerza cortante y momento flector.* La fuerza cortante es constante y el momento flector varía linealmente, por tanto se obtuvieron los diagramas de fuerza cortante y momento flector que se muestran.



Figura 61. Diagrama de cortantes y momentos flectores para el caso de aterrizaje asimétrico.

Fuente: Autores.

De los casos anteriores se observa que las reacciones mas altas para los apoyos A y B se dan en para el aterriza de Proa y aterrizaje asimétrico respectivamente. Basándose en estas reacciones se llevo a cavo el diseño de la tortillería para estos puntos, véase ... secciones 6.4.1 y 6.4.2 ...

#### 6.3 DISEÑO DE STRUTS

El criterio de diseño de para los strut se basó en los elementos rígidos, los cuales solo pueden trabajar a esfuerzos axiales, en los que se supone que las uniones son perfectas, y que no se considera el peso de los elementos.

Por inspección la estructura del montante no es una estructura rígida, puesto que no todos sus elementos forman triángulos. Además, por sus tipos de apoyo, es una estructura redundante, en la que el número de incógnitas es mayor al número de ecuaciones estáticas disponibles para resolver el sistema. Por esta razón se tuvieron en cuenta los siguientes criterios para el diseño de los strut del montante para el flotador:

I. *La estructura se analizó en Algor.* Para que el sistema pudiera llevar a cavo el análisis, los strut se asimilaron como elementos beam. Con estos tipos de análisis el programa calcula los esfuerzos axiales, esfuerzos cortantes y momentos flectores para cada componente, sin embargo los strut se diseñaron solo con los esfuerzos axiales.

La ubicación del flotador determina la disposición del montante y distancias para cada strut ... véase Anexo F ...,con estas distancias y considerando las reacciones en A y en B calculadas para los cuatro casos de aterrizaje (Proa, Rediente, Popa y Asimétrico) ... cuadros 14, 15, 16 y 17 ... se hizo un boceto del montante en el programa Algor para cada caso, asignando inicialmente un área transversal de 0,07508 in<sup>2\*</sup>. De esta forma el programa calculó los esfuerzos axiales para cada strut, también con este análisis se determinaron las reacciones para los puntos de apoyo de C y D, que se muestran en el cuadro 18.

<sup>\*</sup>Área transversal de un tubo de 1in con un espesor de 0,049in

Cuadro 18. Reacciones para los puntos de apoyo de C y D.

|                   | Reacciónes en C y D para cada Carga de Aterrizaje |                            |  |  |  |  |
|-------------------|---------------------------------------------------|----------------------------|--|--|--|--|
|                   | Reacciones en C (Lbf)                             | Reacciones en D (Lbf)      |  |  |  |  |
| 1/5 Cuerpo a Proa | 4530,93                                           | 2490,19                    |  |  |  |  |
| Debajo C.G.       | 2682,56                                           | 1246,29                    |  |  |  |  |
| 85% Cuerpo a Popa | 1839,53                                           | 2879,25                    |  |  |  |  |
| Carga Asimétrica  | 683,59                                            | 2919,21                    |  |  |  |  |
|                   | Reacción Mayor en "C" (Lbf)                       | Rección Mayor en "D" (Lbf) |  |  |  |  |
|                   | 4530,93                                           | 2919,21                    |  |  |  |  |

#### Fuente: Autores

Los esfuerzos axiales son presentados por medio de colores en las figuras 62, 63, 64 y 65 en donde los colores fríos (morado, verde, azul) representan los esfuerzos menores, mientras los colores calidos (Amarillo, anaranjado, rojo) representan los esfuerzos más altos. Es de destacar que los esfuerzos de compresión, el programa los presenta con valores negativos, mientras que los esfuerzos de tensión los presenta con valor positivo. Los esfuerzos axiales que soportan los struts, en cada caso de aterrizaje, son presentados en la columna 2 de los cuadros 19, 20, 21 y 22.

*II. Fuerzas Axiales.* La fuerza axial de cada strut se calculó multiplicando los esfuerzos axiales por el área asignada inicialmente (007508 in<sup>2</sup>). Estos valores son presentados en la columna 3 de los cuadros 19, 20, 21 y 22.

*III. Selección del Material.* Se asignó un material para los struts: *Acero 4130*, el cual es una aleación al Cromo-Molibdeno, combina la soldabilidad con la facilidad de fabricación, capaz de desarrollar buena fuerza y ha sido por años el estándar de la industria aeronáutica, posee un esfuerzo admisible en tensión  $\sigma_{admisible} = 90000 \, p.s.i$ . Sus demás características son presentadas en el Anexo C.

*IV. Área Calculada.* De las fuerzas axiales mas altas en tensión y compresión ... cuadros 19, 20, 21 y 22 ... y con el esfuerzo admisible del material asignado en el paso *III*, se hallaron las áreas calculadas, columna 3 del cuadro 23. De la ecuación (6.1):

$$A_{Calculada} = \frac{Fuerza}{\sigma_{Admisible}}$$
(6.11)

Donde, A<sub>Calculada</sub> = Área calculada

 $\sigma_{\rm Admisible}$  = Esfuerzo admisible del material

*V. Área Estándar.* Los tubos que se que se utilizaron en el diseño de los struts son perfilados, véase Anexo D. Según este Anexo, los tubos perfilados presentan unas equivalencias en tubos redondos de acuerdo al tipo de esfuerzo al que trabajen (tensión o compresión). Las áreas transversales equivalentes en tensión y compresión también son presentadas en el Anexo D.

De acuerdo a las áreas calculadas en el paso IV, se compararon y se seleccionaron áreas normalizadas, y con estas áreas normalizadas en tensión o compresión se conocieron las dimensiones de los tubos perfilados que se utilizaron en el diseño. Estas dimensiones son presentadas en el cuadro 24.

*VI. Factor de Seguridad.* De la relación de las áreas comerciales y las áreas calculadas se determinó un factor de seguridad para cada strut. Estos valores se presentan en el Cuadro 23.





Fuente: Autores.

Cuadro 19. Esfuerzos y fuerzas axiales para el caso de aterrizaje en la proa.

|         | Esfuerzo (p.s.i) | Fuerza Axial (Lbf) |            |
|---------|------------------|--------------------|------------|
| Strut 1 | 21030            | 1578,9324          | Tensión    |
| Strut 2 | -6528            | -490,1222          | Compresión |
| Strut 3 | -45550           | -3419,8940         | Compresión |
| Strut 4 | -29490           | -2214,1092         | Compresión |
| Strut 5 | 33130            | 2487,4004          | Tensión    |
| Strut 6 | -45550           | -3419,8940         | Compresión |
| Strut 7 | -29490           | -2214,1092         | Compresión |
| Strut 8 | 33130            | 2487,4004          | Tensión    |



Figura 63. Esfuerzos axiales para el caso de aterrizaje en el paso (C.G.)

Fuente: Autores.

Cuadro 20. Esfuerzos y fuerzas axiales para el caso de aterrizaje en el paso (C.G.)

|         | Esfuerzo (p.s.i) | Fuerza Axial (Lbf) |            |
|---------|------------------|--------------------|------------|
| Strut 1 | 14470            | 1086,4076          | Tensión    |
| Strut 2 | 12100            | 908,468            | Tensión    |
| Strut 3 | -31300           | -2350,004          | Compresión |
| Strut 4 | -10940           | -821,3752          | Compresión |
| Strut 5 | -16600           | -1246,328          | Compresión |
| Strut 6 | -31300           | -2350,004          | Compresión |
| Strut 7 | -10940           | -821,3752          | Compresión |
| Strut 8 | -16600           | -1246,328          | Compresión |





Fuente: Autores.

| ſ | luadro ( | 21 | Fet | fuerzes | v fuerzas | avialos | nara e | l nasn i | la atorr | izaio on | la nona  |
|---|----------|----|-----|---------|-----------|---------|--------|----------|----------|----------|----------|
| ~ | Juuuio   |    | -0  | 1001200 | y 1001200 | uniuloc | pulu c | 00000    | ac aton  | izujo on | iu popu. |

|         | Esfuerzo (p.s.i) | Fuerza Axial (Lbf) |            |
|---------|------------------|--------------------|------------|
| Strut 1 | -7535            | -565,7278          | Compresión |
| Strut 2 | 14290            | 1072,8932          | Tensión    |
| Strut 3 | 16340            | 1226,8072          | Tensión    |
| Strut 4 | 14470            | 1086,4076          | Tensión    |
| Strut 5 | -38320           | -2877,0656         | Compresión |
| Strut 6 | 16340            | 1226,8072          | Tensión    |
| Strut 7 | 14470            | 1086,4076          | Tensión    |
| Strut 8 | -38320           | -2877,0656         | Compresión |

Figura 65. Esfuerzos axiales para el caso de aterrizaje asimétrico.



Fuente: Autores.

| Cuadro 22. Esfuerzos | y fuerzas | axiales | cargas   | asimétricas |
|----------------------|-----------|---------|----------|-------------|
|                      |           |         | <u> </u> |             |

|         | Esfuerzo (p.s.i) | Fuerza Axial (Lbf) |            |
|---------|------------------|--------------------|------------|
| Strut 1 | 2635             | 197,8358           | Tensión    |
| Strut 2 | 13250            | 994,81             | Tensión    |
| Strut 3 | -7747            | -581,64476         | Compresión |
| Strut 4 | 5368             | 403,02944          | Tensión    |
| Strut 5 | -38650           | -2901,842          | Compresión |
| Strut 6 | -6463            | -485,24204         | Compresión |
| Strut 7 | 3124             | 234,54992          | Tensión    |
| Strut 8 | -33990           | -2551,9692         | Compresión |

|         | Fuerza Axial (Lbf) | A calculada (in2) | A standar (in2) | Factor de<br>Seguridad |
|---------|--------------------|-------------------|-----------------|------------------------|
| Strut 1 | 1578,9324          | 0,01754           | 0,09433         | 5,38                   |
| Strut 2 | 1072,8932          | 0,01192           | 0,09433         | 7,91                   |
| Strut 3 | -3419,894          | 0,03800           | 0,0847          | 2,23                   |
| Strut 4 | -2214,1092         | 0,02460           | 0,09433         | 3,83                   |
| Strut 5 | -2901,842          | 0,03224           | 0,0847          | 2,63                   |
| Strut 6 | -3419,894          | 0,03800           | 0,0847          | 2,23                   |
| Strut 7 | -2214,1092         | 0,02460           | 0,09433         | 3,83                   |
| Strut 8 | -2901,842          | 0,03224           | 0,0847          | 2,63                   |

Cuadro 23. Áreas calculadas y áreas estandarizadas con su respectivo factor de seguridad para cada strut.

Fuente: Autores.

6.3.1 Método de análisis de columnas. Una vez determinadas las dimensiones de los sturs, éstos fueron verificados por pandeo, según el método de Análisis de columnas presentado por Robert L. Mott<sup>23</sup>.Se conocen los siguientes datos:

1. Longitud real struts L, columna 8 del Cuadro 24.

2. La manera de conectar la columna a los apoyos (conexión de pasador)

3. La forma de la sección transversal de los strut y sus dimensiones, columnas 2,3 y 4 del cuadro 24.

4. Material de la columna: Acero 4130, Modulo de Elasticidad, E = 30 000 000  $\frac{Lbf}{m^2}$ , la

resistencia a la cedencia, S<sub>y</sub> = 70 000  $\frac{Lbf}{in^2}$ .

<sup>23</sup>MOTT, Op. Cit., p. 515.

Figura 66. Sección Transversal Strut.





Procedimiento:

1. Se determinó un factor de fijación de los extremos, k = 1,0 (uno), para el tipo de conexión entre los struts y sus apoyos, el cual corresponde a una conexión de pasador, según la figura 67.

Figura 67. Tipos de Conexión en Columnas.



al Columna con uniones de Pasador en ambos extremos

b) Columna empotrada en los extremos

c) Columna empotrada con extremo libre

Fuente: Resistencia de Materiales Aplicada, Robert L. Mott.

2. Se calculó la longitud efectiva, columna 9 del cuadro 24.

$$Le = k^*L \tag{6.12}$$

Donde, Le = Longitud efectiva del strut

K = Factor de fijación de la columna

L = Longitud real del estrut

3. Se determinó el radio de giro mínimo r<sub>min</sub> de la sección transversal para cada strut, por medio del programa Solid-Edge. Los datos se muestran en las columnas 5 y 6 del cuadro 24.

4. Se calculó la razón de esbeltez SR, columna 10 del cuadro 24.

$$SR = \frac{L_e}{r_{\min}}$$
(6.13)

Donde, SR = Razón de esbeltez

L<sub>e</sub> = Longitud efectiva

r<sub>min</sub> = Radio de giro mínimo de la sección transversal

5. Con el modulo de elasticidad, E, y la resistencia a la cedencia, S<sub>y</sub>, del material, se calculó la constante de la columna C<sub>c</sub>. Esta se presenta en la columna 11 del cuadro 24.

$$Cc = \sqrt{\frac{2\pi^2 E}{S_y}}$$
(6.14)

Donde, C<sub>c</sub> = Constante de la columna

E = Modulo de elasticidad

Sy = Resistencia a la cedencia del material

6. Se comparó el valor de la razón de esbeltez, SR, con la constante de la columna C<sub>c,</sub> aplicando las siguientes condiciones:

a. Si SR >  $C_c$ , la columna es larga; se usa la formula de Euler para calcular la carga critica de pandeo.

$$P_{\rm cr} = \frac{\pi^2 EA}{SR^2} \tag{6.15}$$

Donde, P<sub>cr</sub> = Carga Crítica de pandeo

E = Modulo de elasticidad

A = Área de la sección transversal

SR = Razón de esbeltez

b. Si SR < C<sub>c</sub>, la columna es corta. Se usa la formula de J. B. Johnson para calcular la carga critica de pandeo.

$$P_{cr} = AS_{y} \left[ 1 - \frac{S_{y} (SR)^{2}}{4\pi^{2} E} \right]$$
(6.16)

Donde, P<sub>cr</sub> = Carga Crítica de pandeo

A = Área de la sección transversal

Sy = Resistencia a la cedencia del material

SR = Razón de esbeltez

E = Modulo de elasticidad

Puesto que para todos los strut, SR >  $C_c$ , los strut clasifican como columna larga. Se usó la formula de Euler para calcular la carga crítica de pandeo, columna 12 del cuadro 24.

7. Se especificó un factor de diseño, N = 1,5.

8. Se calculó la carga crítica permisible Pa, columna 14 del cuadro 24.

$$P_a = \frac{P_{cr}}{N} \tag{6.17}$$

Donde, Pa = Carga crítica permisible de pandeo

P<sub>cr</sub> = Carga Crítica de pandeo

N = Factor de diseñó

Cuadro 24. Verificación de Struts por Pandeo.

|         | TUBO PERFILADO |           | RADIO DE GIRO |         | AREA<br>TRANSVERSAL | LONGITUD<br>REAL | LONGITUD<br>EFECTIVA | RELACIÓN<br>DE<br>ESBELTEZ | CONSTANTE DE<br>LA COLUMNA | CARGA<br>CRÍTICA | CARGA<br>ADMISIBLE |          |
|---------|----------------|-----------|---------------|---------|---------------------|------------------|----------------------|----------------------------|----------------------------|------------------|--------------------|----------|
|         | EJE MAYOR      | EJE MENOR | THICKNESS     | rx (in) | ry (in)             | (in2)            | L (in)               | Le (in)                    | SR                         | Cc               | Pcr (Lbf)          | Pa (Lbf) |
| Strut 1 | 1,685          | 0,714     | 0,049         | 0,241   | 0,504               | 0,182            | 55,118               | 55,118                     | 229,041                    | 91,977           | 1027,228           | 684,819  |
| Strut 2 | 1,685          | 0,714     | 0,049         | 0,241   | 0,504               | 0,182            | 55,118               | 55,118                     | 229,041                    | 91,977           | 1027,228           | 684,819  |
| Strut 3 | 2,360          | 1         | 0,049         | 0,344   | 0,715               | 0,259            | 39,370               | 39,370                     | 114,535                    | 91,977           | 5841,362           | 3894,241 |
| Strut 4 | 2,697          | 1,143     | 0,049         | 0,395   | 0,820               | 0,297            | 54,528               | 54,528                     | 137,940                    | 91,977           | 4623,194           | 3082,130 |
| Strut 5 | 2,360          | 1         | 0,049         | 0,344   | 0,715               | 0,259            | 36,024               | 36,024                     | 104,799                    | 91,977           | 6977,032           | 4651,354 |
| Strut 6 | 2,360          | 1         | 0,049         | 0,344   | 0,715               | 0,259            | 39,370               | 39,370                     | 114,535                    | 91,977           | 5841,362           | 3894,241 |
| Strut 7 | 2,697          | 1,143     | 0,049         | 0,395   | 0,820               | 0,297            | 54,528               | 54,528                     | 137,940                    | 91,977           | 4623,194           | 3082,130 |
| Strut 8 | 2,360          | 1         | 0,049         | 0,344   | 0,715               | 0,259            | 36,024               | 36,024                     | 104,799                    | 91,977           | 6977,032           | 4651,354 |

6.3.2 Selección de cable tensor. Los cables tensores se fabrican de un material resistente a la corrosión, y son cables hiperestáticos, los cuales le proporciona rigidez a la estructura del montante, y disminuyen las vibraciones. Se seleccionó un cable tensor galvanizado con un diámetro de 5/32 in y construcción 1X19. Este cable posee un esfuerzo a la rotura de 3300 Lbf. Dividiendo la fuerza que resiste esta cable por un factor de seguridad de 1,5 se obtiene una resistencia de 2200 Lbf, la cual es mayor a los esfuerzos axiales de los strut 1 y 2.

Figura 68. Cable de Control Flexible 1X19



Fuente: Aircraft Spruce & Specialty Company

Cable formado de 19 alambres. Su mayor area metálica le hace el más fuerte pero también el menos flexible. Es generalmente usado como refuerzo o riostra, alambres anti-arrastre.

Cuadro 25. Cables de control.

| Cable | Con-   | Breaking Strength<br>(Lbs.) |        |  |  |  |  |
|-------|--------|-----------------------------|--------|--|--|--|--|
| Dia.  | Struc- | Galva-                      | Stain- |  |  |  |  |
| 1/16  | 7x7    | 480                         | 480    |  |  |  |  |
| 3/32  | 7x7    | 920                         | 920    |  |  |  |  |
| 3/32  | 7x19   | 1000                        | 920    |  |  |  |  |
| 1/8   | 1x19   | 2100                        | 2100   |  |  |  |  |
| 1/8   | 7x19   | 2000                        | 1760   |  |  |  |  |
| 5/32  | 1x19   | 3300                        | 3300   |  |  |  |  |
| 5/32  | 7x19   | 2800                        | 2400   |  |  |  |  |
| 3/16  | 7x19   | 4200                        | 3700   |  |  |  |  |
| 1/4   | 7x19   | 7000                        | 6400   |  |  |  |  |

Fuente: Aircraft Spruce & Specialty Company

# 6.4 DISEÑO DE TORNILERIA EN LAS UNIONES DE LOS SOPORTES AL FLOTADOR Y FUSELAJE

Después de hacer el análisis estático y de determinar las reacciones en los apoyos A, B, C y D se seleccionaron las reacciones más altas, y con estas se diseñaron los tornillos pasadores de cabeza cilíndrica con hexágono interior. El material seleccionado para el diseño de los tornillos pasadores fue acero AISI 4130, el cual posee la cualidad de resistencia para usos generales, flechas, engranajes, pernos, etc., su Resistencia a la Fluencia es  $\sigma_{Fluencia} = 1590Mpa = 162,18 \frac{Kgf}{mm^2}$ . A continuación se presenta el calculó del diámetro del tornillo estandarizado y su trabajo a tracción y corte.



Figura 69. Puntos de unión de los soportes a los flotadores y al fuselaje.

**6.4.1** Tornillo del apoyo "**A**". El tornillo para el apoyo A se diseñó tomando las reacciones más altas ya calculadas en la sección ... 6.2 ... para este punto, se hizo una suma vectorial, y se obtuvo una reacción total de:

$$RA = \sqrt{RA_{Y}^{2} + RA_{X}^{2}}$$
(6.18)

Donde, RA = Reacción del apoyo A RA<sub>y</sub>, RA<sub>x</sub> = Componentes de la reacción RA en X e Y.

$$RA = \sqrt{((2626,75Lbf)^2 + (61,14Lbf)^2)}$$

$$\therefore$$
 RA = 2627,46Lbf = 1191,82Kgf

- Calculo del tornillo a tracción
- 1. Se calculó el radio interno del tornillo R<sub>1</sub>, con la ecuación (6.19).

$$\pi(R_I)^2 = \frac{\kappa * F}{\sigma_A} \implies R_I = \sqrt{\frac{\kappa * F}{\pi * \sigma_A}} * \eta$$
(6.19)

Donde, K = Coeficiente de Intersección o tensado, se asignó un coeficientes sin intersecciones con un valor K = 1,35

 $\eta$  = Factor de Seguridad de 2.

F = Fuerza en el apoyo A de 1191,82Kgf.

R<sub>I</sub> = Radio interno del tornillo

$$\sigma_{\rm A}$$
 = Tensión admisible del material =162,18  $\frac{Kgf}{mm^2}$ 

$$R_{I} = \sqrt{\frac{1,35*1191,82Kgf}{\pi*162,18\frac{Kgf}{mm^{2}}}} * 2 = 3,6mm \qquad \therefore R_{I} = 3,6mm$$

$$\emptyset = 2R_1 = 2 * (3,6mm)$$
  $\therefore \emptyset_1 = 7,2mm$ 

2. Se normalizó el diámetro del tornillo.

#### Sistema Métrico

M10x1 Rosca Métrica, con un ángulo de perfil de 60°, diámetro de rosca de  $Ø_E$  = 10mm y paso métrico de 1 mm.

Verificación del Tornillo

3. Se halló la altura métrica, con la ecuación (6.20).

Donde, HM = Altura métrica PM = Paso métrico

HM = 0,86 \* 1mm = 0,86mm  $\therefore HM = 0,86mm$ 

4. Se calculó el  $Ø_{I_i}$  ecuación (6.21).

$$\emptyset_{\rm I} = \emptyset_{\rm E} - 2\rm{HM} \tag{6.21}$$

Donde,  $Ø_1$  = Diámetro interno  $Ø_E$  = diámetro externo
$$Ø_1 = 10-2 (0.86 \text{mm}) = 8.28 \text{mm}$$
  $\therefore @I = 8.28 \text{mm}$ 

5. Se calculó la tensión a tracción del tornillo, ecuación (6.22).

$$\gamma_{Tracción} = \frac{F}{\pi * R_I^2}$$
(6.22)

Donde,  $\gamma_{Tracción}$  = Esfuerzo de tracción

F = Fuerza de Tracción

R<sub>I</sub> = Radio interno del tornillo

$$\gamma_{Tracción} = \frac{1191,82Kgf}{\pi * \left(\frac{8,28mm}{2}\right)^2} = 22,13\frac{Kgf}{mm^2} \qquad \therefore \gamma_{Tracción} = 22,13\frac{Kgf}{mm^2}$$

6. Se determinó el factor de diseño, ecuación (6.23).

$$\eta_{Tracción} = \frac{\sigma_{Fluencia} Material Tornillo}{\sigma Tracción Tornillo}$$
(6.23)

Donde,  $\sigma_{\rm \it Fluencia} Mateial \ {\it Tornillo}$  = Tensión admisible del material del tornillo

 $\sigma Traccion Tornillo$  = Tensión a tracción del tornillo

$$\eta_{Tracción} = \frac{162,18 \frac{Lbf}{mm^2}}{22,13 \frac{Lbf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 7,3$$

### Sistema Ingles

 $\frac{3}{8}$  \* 16 Rosca Whitworth, con un ángulo del perfil de 55°, diámetro de rosca de Ø<sub>E</sub> =  $\frac{3}{8}$ " y N° de filetes en 1" = 16.

# Verificación del Tornillo

4. Se halló el paso métrico, ecuación (6.24).

$$PM = \frac{25,4mm}{N^{\circ} deFiletes}$$
(6.24)

Donde, *PM* = Paso métrico N° de filetes = Numero de filetes en 1 pulgada

$$PM = \frac{25,4mm}{16} = 1,59mm$$
  $\therefore PM = 1,59mm$ 

5. Utilizando la ecuación (6.25), se halló la altura métrica,:

Donde, HM = Altura métrica

PM = Paso métrico

HM = 0,96 \* 1,59mm = 1,53 mm 
$$\therefore$$
 HM = 1,53mm

6. Utilizando la ecuación (6.21), se calculó el ØI:

$$\emptyset I = 25,4mm * (\frac{3}{8}) - 2 * (1,53mm) = 6,47mm$$
  $\therefore \emptyset I = 6,47mm$ 

7. Utilizando la ecuación (6.22), se calculó la tensión a tracción del tornillo:

$$\gamma_{Tracción} = \frac{1191,82Kgf}{\pi * \left(\frac{6,47mm}{2}\right)^2} = 36,25\frac{Kgf}{mm^2} \quad \therefore \gamma_{Tracción} = 36,25\frac{Kgf}{mm^2}$$

8. Utilizando la ecuación (6.23), se determinó el factor de diseño:

$$\eta_{Tracción} = \frac{162,18 \frac{Lbf}{mm^2}}{36,25 \frac{Lbf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 4,5$$

- Cálculo del tornillo a corte
- 1. Se calculó el R<sub>i</sub> del tornillo multiplicando la ecuación (6.8) por un factor de diseño  $\eta$ :

$$2 * \pi (R_I)^2 = \frac{F}{\tau_{Adm.Mat.Tor.Corte}}$$

$$R_{I} = \sqrt{\frac{F}{2 * \pi * \tau_{Adm.Mat.Tor.Corte}}} * \eta$$
(6.26)

Donde, RI= Radio interno del tornilloF= Fuerza en el apoyo A de 1191,82Kgf $\tau_{Adm.Mat.Tor.Corte}$ = Tensión admisible en corte del material $= 0,25 * \sigma_{Fluencia} = 40,55 \frac{Kgf}{mm^2}$  $\eta$ = Factor de Seguridad de 2.

$$R_{I} = \sqrt{\frac{1191,82Kgf}{2*\pi*40,55\frac{Kgf}{mm^{2}}}} * 2 = 4,3mm \qquad \therefore R_{I} = 4,3mm$$

$$\emptyset = 2R_1 = 2 * (4,3mm)$$
  $\therefore \emptyset_1 = 8,6mm$ 

2. Se normalizó el diámetro del tornillo.

Sistema Métrico

M12x1,5 Rosca Métrica, con un ángulo de perfil de 60°, diámetro de rosca de  $Ø_E$  = 12mm y paso métrico de 1,5mm.

Verificación del Tornillo

3. Se halló la altura métrica, ecuación (6.20)

$$HM = 0,86 PM \implies HM = 0,86 * 1,5mm = 1,29mm$$
  $\therefore HM = 1,29mm$ 

4. Se calculó el Ø<sub>I</sub>, ecuación (6.21):

$$Ø_{I} = Ø_{E} - 2HM \implies Ø_{I} = 12 - 2 (1,29mm) = 9,42mm$$
  $\therefore ØI = 9,42mm$ 

5. Se calculó la tensión a corte del tornillo, ecuación (6.27).

$$\tau_{Corte} = \frac{F}{\pi * R_I^2} \tag{6.27}$$

Donde,  $\tau_{Corte}$  = Esfuerzo de corte

F = Fuerza de Corte

R<sub>1</sub> = Radio Interno del Tornillo

$$\tau_{Corte} = \frac{1191,82Kgf}{\pi * \left(\frac{9,42mm}{2}\right)^2} = 17,1\frac{Kgf}{mm^2} \qquad \therefore \tau_{Corte} = 17,1\frac{Kgf}{mm^2}$$

6. Se determinó el factor de diseño, ecuación (6.28).

$$\eta_{Corte} = \frac{\tau_{Adm.Mat.Tor.Corte}}{\tau_{CorteTornillo}}$$
(6.28)

Donde,  $\tau_{Adm.Mat.Tor.Corte}$  = Tensión admisible del material en corte  $\tau_{CorteTornillo}$  = Esfuerzo de corte

$$\eta_{Corte} = \frac{40,55 \frac{Kgf}{mm^2}}{17,1 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Corte} = 2,4$$

# Sistema Inglés

 $\frac{1}{2}$  \* 12 Rosca Whitworth, con un ángulo del perfil de 55°, diámetro de rosca de  $\emptyset_E = \frac{1}{2}$ " y N° de filetes en 1" = 12.

Verificación del Tornillo

3. Se halló el paso métrico, ecuación (6.24).

$$PM = \frac{25,4mm}{N^{\circ}deFiletes} = \frac{25,4mm}{12} = 2,12mm$$
 :  $PM = 2,12mm$ 

4. Se halló la altura métrica, ecuación (6.25).

$$HM = 0,96 PM \implies HM = 0,96 * 2,12mm = 2,04 mm \qquad \therefore HM = 2,04mm$$

5. Se calculó el  $Ø_{I}$ , ecuación (6.21).

$$\emptyset_{I} = \emptyset_{E} - 2HM \implies \emptyset I = 25,4mm * \frac{1}{2} - 2 * (2,04mm) = 8,62mm \qquad \therefore \emptyset I = 8,62mm$$

6. Se calculó la tensión a corte del tornillo, ecuación (6.27).

$$\tau_{Corte} = \frac{F}{\pi * R_{I}^{2}} = \frac{1191,82Kgf}{\pi * \left(\frac{8,62mm}{2}\right)^{2}} = 20,4\frac{Kgf}{mm^{2}} \qquad \therefore \tau_{Corte} = 20,4\frac{Kgf}{mm^{2}}$$

7. Se determinó el factor de diseño, ecuación (6.28):

$$\eta_{Corte} = \frac{\tau_{Adm.Mat.Tor.Corte}}{\tau_{CorteTornillo}} = \frac{40,55 \frac{Kgf}{mm^2}}{20,4 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Corte} = 2$$

**6.4.2** Tornillo del apoyo "B". Seguidamente se diseñó el tornillo para el apoyo B, con las reacciones mas altas ya calculadas en la sección ... 6.2 ... para este punto, se hizo un suma vectorial, y se obtuvo una reacción total de:

$$RB = \sqrt{RB_{Y}^{2} + RB_{Z}^{2}}$$
(6.29)

Donde, RB= Reacción del apoyo BRBy, RBz= Componentes de la reacción RB en X y Z.

$$RB = \sqrt{((2157,99Lbf)^2 + (533,284Lbf)^2)}$$

$$\therefore RB = 2222,9Lbf = 1008,3Kgf$$

- Cálculo del tornillo a tracción
- 1. Se calculó el R<sub>i</sub> del tornillo. De la ecuación (6.19).

$$R_{I} = \sqrt{\frac{\kappa * F}{\pi * \sigma_{A}}} * \eta$$

Donde, K = Coeficiente de Intersección o tensado, se asignó un coeficientes sin intersecciones con un valor K = 1,35

 $\eta$  = Factor de Seguridad de 2.

- F = Fuerza en el apoyo B de 1008,3Kgf.
- R<sub>I</sub> = Radio interno del tornillo
- $\sigma_A$  = Tensión admisible del material = 162,18  $\frac{Kgf}{mm^2}$

$$R_{I} = \sqrt{\frac{1,35 * 1008,3Kgf}{\pi * 162,18\frac{Kgf}{mm^{2}}}} * 2 = 3,3mm \qquad \therefore R_{I} = 3,3mm$$

$$Ø_1 = 2R_1 = 2 * (3,3mm)$$
  $\therefore @_1 = 6,6mm$ 

2. Se normalizó el diámetro del tornillo:

### Sistema Métrico

M8x1 Rosca Métrica, con un ángulo de perfil de 60°, diámetro de rosca de  $Ø_E$  = 8mm y paso métrico de 1mm. Serie 4.

Verificación del Tornillo

3. Se halló la altura métrica. De la ecuación (6.20):

$$HM = 0,86 PM \implies HM = 0,86 * 1mm = 0,86mm \qquad \therefore HM = 0.86mm$$

4. Se calculó el  $Ø_L$  De la ecuación (6.21):

$$\emptyset_{I} = \emptyset_{E} - 2HM \implies \emptyset_{I} = 8 - 2 (0,86mm) = 6,28mm$$
  $\therefore \emptyset_{I} = 6,28mm$ 

5. Se calculó la tensión a tracción del tornillo. De la ecuación (6.22):

$$\gamma_{Tracción} = \frac{F}{\pi * R_I^2} = \frac{1008,3Kgf}{\pi * \left(\frac{6,28mm}{2}\right)^2} = 32,6\frac{Kgf}{mm^2} \qquad \therefore \gamma_{Tracción} = 32,6\frac{Kgf}{mm^2}$$

6. Se determinó el factor de diseño. De la ecuación (6.23):

$$\eta_{Tracción} = \frac{\sigma_{Fluencia} MaterialTornillo}{\sigma TracciónTornillo} = \frac{162,18 \frac{Kgf}{mm^2}}{32,6 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 5$$

# Sistema Ingles

 $\frac{3}{8}$  \* 16 Rosca Whitworth, con un ángulo del perfil de 55°, diámetro de rosca de  $\emptyset_E = \frac{3}{8}$ " y N° de filetes en 1" = 16.

## Verificación del Tornillo

3. Se halló el paso métrico. De la ecuación (6.24):

$$PM = \frac{25,mm}{N^{\circ} deFiletes} = \frac{25,4mm}{16} = 1,6mm \qquad \therefore PM = 1,6mm$$

4. Se halló la altura métrica. De la ecuación (6.25):

$$HM = 0,96 PM \implies HM = 0,96 * 1,6mm = 1,5mm \qquad \therefore HM = 1,5mm$$

5. Se calculó el  $Ø_{I}$ . De la ecuación (6.21):

$$\emptyset_{I} = \emptyset_{E} - 2HM \implies \emptyset I = 25,4mm * \left(\frac{3}{8}\right) - 2 * (1,5mm) = 6,5mm \qquad \therefore \emptyset I = 6,5mm$$

6. Se calculó la tensión a tracción del tornillo. De la ecuación (6.22):

$$\gamma_{Tracción} = \frac{F}{\pi * R_I^2} = \frac{1008,3Kgf}{\pi * \left(\frac{6,5mm}{2}\right)^2} = 30,4\frac{Kgf}{mm^2} \qquad \therefore \gamma_{Tracción} = 30,4\frac{Kgf}{mm^2}$$

7. Se determinó el factor de diseño. De la ecuación (6.23):

$$\eta_{Tracción} = \frac{\sigma_{Fluencia} Material Tornillo}{\sigma Tracción Tornillo} = \frac{162,18 \frac{Kgf}{mm^2}}{30,4 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 5,3$$

• Cálculo del tornillo a corte

1. Se calculó el R<sub>I</sub> del tornillo. De la ecuación (6.26):

$$R_{I} = \sqrt{\frac{F}{2 * \pi * \tau_{Adm.Mat.Tor.Corte}}} * \eta$$

Donde, RI= Radio interno del tornilloF= Fuerza en el apoyo B de 1008,3Kgf.1191,82Kgf $\tau_{Adm.Mat.Tor.Corte}$ = Tensión admisible en corte del material $= 0,25 * \sigma_{Fluencia} = 40,55 \frac{Kgf}{mm^2}$  $\eta$ = Factor de Seguridad de 2.

$$R_{I} = \sqrt{\frac{1008,3Kgf}{2*\pi*40,55\frac{Kgf}{mm^{2}}}} * 2 = 4mm \qquad \therefore R_{I} = 4mm$$

$$\emptyset = 2R_1 = 2 * (4mm)$$
  $\therefore \emptyset_1 = 8mm$ 

2. Se normalizó el diámetro del tornillo:

#### Sistema Métrico

M10x1 Rosca Métrica, con un ángulo de perfil de 60°, diámetro de rosca de  $Ø_E$  = 10mm y paso métrico de 1mm.

Verificación del Tornillo

3. Se halló la altura métrica, ecuación (6.20):

HM = 0,86 PM 
$$\implies$$
 HM = 0,86 \* 1mm = 0,86mm  $\therefore$  HM = 0,86mm

4. Se calculó el Ø<sub>I</sub>, ecuación (6.21):

$$Ø_{I} = Ø_{E} - 2HM \implies Ø_{I} = 10 - 2 (0,86mm) = 8,28mm$$
  $\therefore ØI = 8,28mm$ 

5. Se calculó la tensión a corte del tornillo, ecuación (6.27):

$$\tau_{Corte} = \frac{F}{\pi * R_{I}^{2}} = \frac{1008,3Kgf}{\pi * \left(\frac{8,28mm}{2}\right)^{2}} = 18,7\frac{Kgf}{mm^{2}} \qquad \therefore \tau_{Corte} = 18,7\frac{Kgf}{mm^{2}}$$

6. Se determinó el factor de diseño, ecuación (6.29):

$$\eta_{Corte} = \frac{\tau_{Adm.Mat.Tor.Corte}}{\tau_{CorteTornillo}} = \frac{40,55 \frac{Kgf}{mm^2}}{18,7 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Corte} = 2,2$$

# Sistema Ingles

 $\frac{1}{2}$  \* 12 Rosca Whitworth, con un ángulo del perfil de 55°, diámetro de rosca de Ø<sub>E</sub> =  $\frac{1}{2}$  " y N° de filetes en 1" = 12.

## Verificación del Tornillo

3. Se halló el paso métrico, ecuación (6.24):

$$PM = \frac{25,4mm}{N^{\circ}deFiletes} = \frac{25,4mm}{12} = 2,12mm$$
 :  $PM = 2,12mm$ 

4. Se halló la altura métrica, ecuación (6.25):

$$HM = 0,96 PM \implies HM = 0,96 * 2,12mm = 2,04 mm \qquad \therefore HM = 2,04mm$$

5. Se calculó el  $Ø_{l}$ , ecuación (6.21):

$$\emptyset_{I} = \emptyset_{E} - 2HM \implies \emptyset I = 25,4mm * \left(\frac{1}{2}\right) - 2 * (2,04mm) = 8,62mm \qquad \therefore \emptyset I = 8,62mm$$

6. Se calculó la tensión a corte del tornillo, ecuación (6.27):

$$\tau_{Corte} = \frac{F}{\pi * R_{I}^{2}} = \frac{1008,3Kgf}{\pi * \left(\frac{8,62mm}{2}\right)^{2}} = 17,3\frac{Kgf}{mm^{2}} \qquad \therefore \tau_{Corte} = 17,3\frac{Kgf}{mm^{2}}$$

7. Se determinó el factor de diseño, ecuación (6.28):

$$\eta_{Corte} = \frac{\tau_{Adm.Mat.Tor.Corte}}{\tau_{CorteTornillo}} = \frac{\frac{40,55 \frac{Kgf}{mm^2}}{17,3 \frac{Kgf}{mm^2}}}{17,3 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Corte} = 2,3$$

**6.4.3 Tornillo del apoyo "C".** Posteriormente se diseñó el tornillo para el apoyo C, teniendo en cuenta las reacciones mas altas ya calculadas en la sección ... 6.3 ... para este punto, se hizo un suma vectorial, y se obtuvo una reacción total de:

$$RC = \sqrt{RC_{X}^{2} + RC_{Y}^{2} + RC_{Z}^{2}}$$
(6.30)

Donde, RC = Reacción del apoyo C RC<sub>X</sub>, RC<sub>Y</sub>, RC<sub>Z</sub> = Componentes de la reacción RC en X, Y y Z.

$$RC = \sqrt{((342,249Lbf)^2 + (3865,08Lbf)^2 + (2339,51)^2)}$$

$$\therefore RC = 4530,93Lbf = 2055,23Kgf$$

- Cálculo del tornillo a tracción
- 1. Calculo el R<sub>I</sub> del tornillo. De la ecuación (6.19).

$$R_{I} = \sqrt{\frac{\kappa * F}{\pi * \sigma_{A}}} * \eta$$

- Donde; K = Coeficiente de Intersección o tensado, se asignó un coeficientes sin intersecciones con un valor K = 1,35
  - $\eta$  = Factor de Seguridad de 2.
  - F = Fuerza en el apoyo C de 2055,23 Kgf.
  - R<sub>I</sub> = Radio interno del tornillo

 $\sigma_A$  = Tensión admisible del material = 162,18  $\frac{Kgf}{mm^2}$ 

$$R_{I} = \sqrt{\frac{1,35 * 2055,23Kgf}{\pi * 162,18\frac{Kgf}{mm^{2}}}} * 2 = 4,7mm \qquad \therefore R_{I} = 4,7mm$$

$$Ø_1 = 2R_1 = 2 * (4,7mm)$$
  $\therefore \quad Ø_1 = 9,4mm$ 

2. Se normalizó el diámetro del tornillo.

#### Sistema Métrico

M12x1,5 Rosca Métrica, con un ángulo de perfil de 60°, diámetro de rosca de  $Ø_E$  = 12mm y paso métrico de 1,5mm. Serie 4.

- Verificación del Tornillo
- 3. Con la ecuación (6.20) se halló la altura métrica:

HM = 0,86 PM 
$$\implies$$
 HM = 0,86 \* 1,5mm = 1,29mm  $\therefore$  HM = 1,29mm

4. Con la ecuación (6.21) se calculó el ØI:

$$\emptyset_{I} = \emptyset_{E} - 2HM \implies \emptyset_{I} = 12 - 2(1,29mm) = 9,42mm \qquad \therefore \emptyset I = 9,42mm$$

5. Con la ecuación (6.22) se calculó la tensión a tracción del tornillo:

$$\gamma_{Tracción} = \frac{F}{\pi * R_I^2} = \frac{2055,23Kgf}{\pi * \left(\frac{9,42mm}{2}\right)^2} = 29,5\frac{Kgf}{mm^2} \qquad \therefore \gamma_{Tracción} = 29,5\frac{Kgf}{mm^2}$$

6. Con la ecuación (6.23) se determinó el factor de diseño:

$$\eta_{Tracción} = \frac{\sigma_{Fluencia} Material Tornillo}{\sigma Tracción Tornillo} = \frac{\frac{162,18 \frac{Kgf}{mm^2}}{29,5 \frac{Kgf}{mm^2}}}{29,5 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 5,5$$

# Sistema Ingles

 $\frac{1}{2}$  \* 12 Rosca Whitworth, con un ángulo del perfil de 55°, diámetro de rosca de Ø<sub>E</sub> =  $\frac{1}{2}$ " y N° de filetes en 1" = 12.

Verificación del Tornillo

3. Con la ecuación (6.24) se halló el paso métrico.

$$PM = \frac{25, mm}{N^{\circ} deFiletes} = \frac{25, 4mm}{12} = 2,12mm$$
  $\therefore PM = 2,12mm$ 

4. Con la ecuación (6.25) se halló la altura métrica:

$$HM = 0.96 PM \implies HM = 0.96 * 2.12mm = 2.04mm$$
  $\therefore HM = 2.04mm$ 

5. Con la ecuación (6.21) se calculó el ØI:

$$\emptyset_{I} = \emptyset_{E} - 2HM \implies \emptyset I = 25,4mm * (\frac{1}{2}) - 2 * (2,04mm) = 8,62mm \qquad \therefore \emptyset I = 8,62mm$$

6. Con la ecuación (6.222) se calculó la tensión a tracción del tornillo:

$$\gamma_{Tracción} = \frac{F}{\pi * R_I^2} = \frac{2055,23Kgf}{\pi * \left(\frac{8,62mm}{2}\right)^2} = 35,2\frac{Kgf}{mm^2} \qquad \therefore \gamma_{Tracción} = 35,2\frac{Kgf}{mm^2}$$

7. Con la ecuación (6.23) se determinó el factor de diseño:

$$\eta_{Tracción} = \frac{\sigma_{Fluencia} MaterialTornillo}{\sigma TracciónTornillo} = \frac{\frac{162,18 \frac{Kgf}{mm^2}}{35,2 \frac{Kgf}{mm^2}}}{35,2 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 4,6$$

## • Calculo del tornillo a corte

1. De la ecuación (6.26) se determinó el R<sub>I</sub> del tornillo. Debido a la forma del soporte C, véase ... Anexo H..., el tornillo está sometido a cuatro áreas de corte.

$$4 * \pi (R_I)^2 = \frac{F}{\tau_{Adm.Mat.Tor.Corte}} \implies R_I = \sqrt{\frac{F}{4 * \pi * \tau_{Adm.Mat.Tor.Corte}}} * \eta$$

$$R_{I} = \sqrt{\frac{2055,23Kgf}{4 * \pi * 40,55\frac{Kgf}{mm^{2}}}} * 2 = 4mm \qquad \therefore R_{I} = 4mm$$

$$\emptyset = 2R_1 = 2 * (4mm)$$
  $\therefore \emptyset_1 = 8mm$ 

2. Se normalizó el diámetro del tornillo:

Sistema Métrico

M14x1,5 Rosca Métrica, con un ángulo de perfil de 60°, diámetro de rosca de  $Ø_E$  = 14mm y paso métrico de 1,5mm.

Verificación del Tornillo

4. Se halló la altura métrica, ecuación (6.20):

$$HM = 0,86 PM \implies HM = 0,86 * 1,5mm = 1,29mm \qquad \therefore HM = 1,29mm$$

5. Se calculó el  $Ø_{I}$ , ecuación (6.21):

$$Ø_{I} = Ø_{E} - 2HM \implies Ø_{I} = 14 - 2 (1,29mm) = 11,42mm \therefore Ø_{I} = 11,42mm$$

6. Se calculó la tensión a corte del tornillo, ecuación (6.27):

$$\tau_{Corte} = \frac{F}{\pi * R_{I}^{2}} = \frac{2055,23Kgf}{\pi * \left(\frac{11,42mm}{2}\right)^{2}} = 20,1\frac{Kgf}{mm^{2}} \qquad \therefore \tau_{Corte} = 20,1\frac{Kgf}{mm^{2}}$$

7. Se determinó el factor de diseño, ecuación (6.28):

$$\eta_{Corte} = \frac{\tau_{Adm.Mat.Tor.Corte}}{\tau_{CorteTornillo}} = \frac{40,55 \frac{Kgf}{mm^2}}{20,1 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Corte} = 2$$

# Sistema Ingles

 $\frac{5}{8}$  \* 11 Rosca Whitworth, con un ángulo del perfil de 55°, diámetro de rosca de  $\emptyset_E = \frac{5}{8}$  " y N° de filetes en 1" = 11.

# Verificación del Tornillo

4. Se halló el paso métrico, ecuación (6.24):

$$PM = \frac{25,4mm}{N^{\circ}deFiletes} = \frac{25,4mm}{11} = 2,3mm \qquad \therefore PM = 2,3mm$$

5. Se halló la altura métrica, ecuación (6.25):

$$HM = 0.96 PM \implies HM = 0.96 * 2.3mm = 2.2mm$$
  $\therefore HM = 2.2mm$ 

6. Se calculó el Ø<sub>l</sub>, ecuación (6.21):

$$\emptyset_{I} = \emptyset_{E} - 2HM \implies \emptyset I = 25,4mm * \left(\frac{5}{8}\right) - 2 * (2,2mm) = 11,48mm \qquad \therefore \emptyset I = 11,48mm$$

7. Se calculó la tensión a corte del tornillo, ecuación (6.27):

$$\tau_{Corte} = \frac{F}{\pi * R_{I}^{2}} = \frac{2055,23Kgf}{\pi * \left(\frac{11,48mm}{2}\right)^{2}} = 20\frac{Kgf}{mm^{2}} \qquad \therefore \tau_{Corte} = 20\frac{Kgf}{mm^{2}}$$

8. Se determinó el factor de diseño, ecuación (6.28):

$$\eta_{Corte} = \frac{\tau_{Adm.Mat.Tor.Corte}}{\tau_{CorteTornillo}} = \frac{\frac{40,55 \frac{Kgf}{mm^2}}{20 \frac{Kgf}{mm^2}}}{20 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Corte} = 2$$

-- -

**6.4.4 Tornillos del apoyo "D".** En el diseño de la tortillería para este apoyo se hicieron las siguientes consideraciones:

Los *tornillos 1 y 5* se diseñaron de forma similar a los *tornillos 10 y 11*. En el diseño de tornillos 1 y 5, la mitad de la reacción del apoyo D ... sección 6.3 ... se distribuyó en cada tornillo. Para este caso, los tornillos están en corte doble. Véase figura 70

$$RD = \sqrt{RD_{X}^{2} + RD_{Y}^{2} + RD_{Z}^{2}}$$
(6.31)

Donde, RD = Reacción del apoyo D RD<sub>X</sub>, RD<sub>Y</sub>, RD<sub>Z</sub> = Componentes de la reacción RC en X, Y y Z.

 $RD = \sqrt{((634,237Lbf)^2 + (2347,47Lbf)^2 + (1615,21Lbf)^2)}$ 

 $\therefore RD = 2919, 21Lbf = 1324, 15Kgf$ 

Figura 70. Soporte D



Fuente Autores

$$\therefore \frac{RD}{2} = 1459,61Lbf = 662,08Kgf$$
$$\therefore \frac{RD}{3} = 973,07Lbf = 441,4Kgf$$

- Calculo del tornillo a tracción
- 1. Calculo el  $R_I$  del tornillo, de la ecuación (6.19):

$$R_{I} = \sqrt{\frac{\kappa * F}{\pi * \sigma_{A}}} * \eta$$

Donde, K = Coeficiente de Intersección o tensado, se asignó un coeficientes sin intersecciones con un valor K = 1,35

 $F = R_D/2$  = Mitad de la fuerza en el apoyo D de 662,08 Kgf.

 $\eta$  = Factor de Seguridad de 2

R<sub>I</sub> = Radio interno del tornillo

 $\sigma_A$  = Tensión admisible del material = 162,18  $\frac{Kgf}{mm^2}$ 

$$R_{I} = \sqrt{\frac{1,35*662,08Kgf}{\pi*162,18\frac{Kgf}{mm^{2}}}} * 2 = 2,7mm \qquad \therefore R_{I} = 2,7mm$$

$$Ø_1 = 2R_1 = 2 * (2,7mm)$$
  $\therefore \quad Ø_1 = 5,4mm$ 

2. Se normalizó el diámetro del tornillo:

## Sistema Métrico

M8x1 Rosca Métrica, con un ángulo de perfil de 60°, diámetro de rosca de  $Ø_E$  = 8mm y paso métrico de 1mm. Serie 4.

Verificación del Tornillo

3. Se halló la altura métrica, de la ecuación (6.20):

HM = 0,86 PM 
$$\implies$$
 HM = 0,86 \* 1mm = 0,86mm  $\therefore$  HM = 0,86mm

4. Se calculó el  $Ø_I$ , de la ecuación (6.21):

$$\emptyset_{I} = \emptyset_{E} - 2HM \implies \emptyset_{I} = 8 - 2 (0,86mm) = 6,28mm$$
  $\therefore \emptyset_{I} = 6,28mm$ 

5. Se calculó la tensión a tracción del tornillo, de la ecuación (6.22):

$$\gamma_{Tracción} = \frac{F}{\pi * R_I^2} = \frac{662,08Kgf}{\pi * \left(\frac{6,28mm}{2}\right)^2} = 21,4\frac{Kgf}{mm^2} \qquad \therefore \gamma_{Tracción} = 21,4\frac{Kgf}{mm^2}$$

6. Se determinó el factor de diseño, de la ecuación (6.23):

$$\eta_{Tracción} = \frac{\sigma_{Fluencia}MaterialTornillo}{\sigma TracciónTornillo} = \frac{\frac{162,18}{mm^2}}{\frac{Kgf}{21,4}\frac{Kgf}{mm^2}}$$
  $\therefore \eta_{Tracción} = 7,6$ 

Sistema Ingles

 $\frac{5}{16}$  \* 18 Rosca Whitworth, con un ángulo del perfil de 55°, diámetro de rosca de Ø<sub>E</sub> =  $\frac{5}{16}$  " y N° de filetes en 1" = 18.

Verificación del Tornillo

3. Se halló el paso métrico, de la ecuación (6.24):

$$PM = \frac{25, mm}{N^{\circ} \, deFiletes} = \frac{25, 4mm}{18} = 1,41mm$$
  $\therefore PM = 1,41mm$ 

4. Se halló la altura métrica, de la ecuación (6.25):

$$HM = 0.96 PM \implies HM = 0.96 * 1.41mm = 1.35mm$$
  $\therefore HM = 1.35mm$ 

5. Se calculo el  $Ø_{I}$ , de la ecuación (6.21):

$$\emptyset_{I} = \emptyset_{E} - 2HM \implies \emptyset I = 25,4mm * \left(\frac{5}{16}\right) - 2*(1,35mm) = 5,24mm \qquad \therefore \emptyset I = 5,24mm$$

6. Se calculó la tensión a tracción del tornillo, de la ecuación (6.22):

$$\gamma_{Tracción} = \frac{F}{\pi * R_I^2} = \frac{662,08Kgf}{\pi * \left(\frac{5,24mm}{2}\right)^2} = 30,7\frac{Kgf}{mm^2} \qquad \therefore \gamma_{Tracción} = 30,7\frac{Kgf}{mm^2}$$

7. Se determino el factor de diseño, de la ecuación (6.23):

$$\eta_{Tracción} = \frac{\sigma_{Fluencia}MaterialTornillo}{\sigma TracciónTornillo} = \frac{162,18\frac{Kgf}{mm^2}}{30,7\frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 5,3$$

- Calculo del tornillo a corte
- 1. Se calculó el R<sub>I</sub> del tornillo, de la ecuación (6.26):

$$R_{I} = \sqrt{\frac{F}{2 * \pi * \tau_{Adm.Mat.Tor.Corte}}} * \eta$$

Donde, R<sub>I</sub> = Radio interno del tornillo  
F = R<sub>D</sub>/2 = Mitad de la fuerza en el apoyo D de 662,08 Kgf.  

$$\tau_{Adm.Mat.Tor.Corte}$$
 = Tensión admisible en corte del material  
= 0,25 \*  $\sigma_{Fluencia}$  = 40,55  $\frac{Kgf}{mm^2}$   
 $\eta$  = Factor de Seguridad de 2.

$$R_{I} = \sqrt{\frac{662,08Kgf}{2*\pi*40,55\frac{Kgf}{mm^{2}}}} * 2 = 3,2mm \qquad \therefore R_{I} = 3,2mm$$

$$\emptyset = 2R_1 = 2 * (3,2 \text{ mm})$$
  $\therefore \emptyset_1 = 6,4mm$ 

2. Se normalizó el diámetro del tornillo.

## Sistema Métrico

M10x1 Rosca Métrica, con un ángulo de perfil de 60°, diámetro de rosca de  $Ø_E$  = 10mm y paso métrico de 1mm.

Verificación del Tornillo

3. Se halló la altura métrica, de la ecuación (6.20):

HM = 0,86 PM 
$$\implies$$
 HM = 0,86 \* 1mm = 0,86mm  $\therefore$  HM = 0,86mm

5. Se calculó el Ø<sub>I</sub>, de la ecuación (6.21):

$$\emptyset_{I} = \emptyset_{E} - 2HM \implies \emptyset_{I} = 10 - 2 (0,86mm) = 6,28mm \therefore \emptyset I = 8,28mm$$

6. Se calculó la tensión a corte del tornillo, de la ecuación (6.27):

$$\tau_{Corte} = \frac{F}{\pi * R_{I}^{2}} = \frac{662,08Kgf}{\pi * \left(\frac{8,28mm}{2}\right)^{2}} = 12,3\frac{Kgf}{mm^{2}} \qquad \therefore \tau_{Corte} = 12,3\frac{Kgf}{mm^{2}}$$

7. Se determinó el factor de diseño, de la ecuación (6.28):

$$\eta_{Corte} = \frac{\tau_{Adm.Mat.Tor.Corte}}{\tau_{CorteTornillo}} = \frac{40,55 \frac{Kgf}{mm^2}}{12,3 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Corte} = 3,3$$

## Sistema Ingles

 $\frac{1}{2}$  \* 12 Rosca Whitworth, con un ángulo del perfil de 55°, diámetro de rosca de Ø<sub>E</sub> =  $\frac{1}{2}$  " y N° de filetes en 1" = 12.

Verificación del Tornillo

4. Se halló el paso métrico, de la ecuación (6.24):

$$PM = \frac{25,4mm}{N^{\circ} \, deFiletes} = \frac{25,4mm}{12} = 2,12mm$$
  $\therefore PM = 2,12mm$ 

5. Se halló la altura métrica, de la ecuación (6.25):

$$HM = 0.96 PM \implies HM = 0.96 * 2.12mm = 2.04mm$$
  $\therefore HM = 2.04mm$ 

6. Se calculó el  $Ø_I$ , de la ecuación (6.21):

$$\emptyset_{I} = \emptyset_{E} - 2HM \implies \emptyset I = 25,4mm * \left(\frac{1}{2}\right) - 2 * (2,04mm) = 8,62mm \qquad \therefore \emptyset I = 8,62mm$$

7. Se calculó la tensión a corte del tornillo, de la ecuación (6.7):

$$\tau_{Corte} = \frac{F}{\pi * R_I^2} = \frac{662,08Kgf}{\pi * \left(\frac{8,62}{2}\right)^2} = 11,35\frac{Kgf}{mm^2} \qquad \therefore \tau_{Corte} = 11,35\frac{Kgf}{mm^2}$$

8. Se determinó el factor de diseño, de la ecuación (6.28):

$$\eta_{Corte} = \frac{\tau_{Adm.Mat.Tor.Corte}}{\tau_{CorteTornillo}} = \frac{40,55 \frac{Kgf}{mm^2}}{11,35 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Corte} = 3,6$$

Los tornillos 2, 3 y 4 se diseñaron de la misma manera que los tornillos 7, 8 y 9. Para este cálculo la reacción RD se distribuyó uniformemente sobre los tornillos 2, 3 y 4. Véase figura 70.

- Calculo del tornillo a tracción
- 1. Se calculó el R<sub>I</sub> del tornillo, de la ecuación (6.19):

$$R_{I} = \sqrt{\frac{\kappa * F}{\pi * \sigma_{A}}} * \eta$$

Donde, K = Coeficiente de Intersección o tensado, se asignó un coeficientes sin intersecciones con un valor K = 1,35

- $F = F_D/3 =$  Fuerza en el apoyo D de 441,4Kgf
- R<sub>I</sub> = Radio interno del tornillo
- $\sigma_A$  = Tensión admisible del material = 162,18  $\frac{Kgf}{mm^2}$
- $\eta$  = Factor de Seguridad de 2.

$$R_{I} = \sqrt{\frac{1,35 * 441,4Kgf}{\pi * 162,18\frac{Kgf}{mm^{2}}}} * 2 = 2,2mm \qquad \therefore R_{I} = 2,2mm$$

$$Ø_{I} = 2R_{I} = 2 * (2,2mm)$$
  $\therefore \quad Ø_{I} = 4,4mm$ 

2. Se normalizó el diámetro del tornillo.

## Sistema Métrico

M6x0,5 Rosca Métrica, con un ángulo de perfil de 60°, diámetro de rosca de  $Ø_E$  = 6mm y paso métrico de 0,5mm. Serie 4.

Verificación del Tornillo

3. Se halló la altura métrica, de la ecuación (6.20):

$$HM = 0.86 PM \implies HM = 0.86 * 0.5mm = 0.43mm \therefore HM = 0.43mm$$

4. Se calculó el Ø<sub>I</sub>, ecuación (6.21):

 $arnothing_I = arnothing_E - 2HM \implies arnothing_I = 6 - 2 (0,43mm) = 5,14mm$   $\therefore arnothing I = 5,14mm$ 

5. Se calculó la tensión a tracción del tornillo, ecuación (6.22):

$$\gamma_{Tracción} = \frac{F}{\pi * R_I^2} = \frac{441.4 Kgf}{\pi * \left(\frac{5.14 mm}{2}\right)^2} = 21.3 \frac{Kgf}{mm^2} \qquad \therefore \gamma_{Tracción} = 21.3 \frac{Kgf}{mm^2}$$

6. Se determinó el factor de diseño, ecuación (6.23):

$$\eta_{Tracción} = \frac{\sigma_{Fluencia}MaterialTornillo}{\sigma TracciónTornillo} = \frac{\frac{162,18}{mm^2}}{21,3\frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 7,6$$

## Sistema Ingles

 $\frac{1}{4}$  \* 20Rosca Whitworth, con un ángulo del perfil de 55°, diámetro de rosca de  $Ø_E = \frac{1}{4}$ " y N° de filetes en 1" = 20.

Verificación del Tornillo

3. Se halló el paso métrico, ecuación (6.24):

$$PM = \frac{25, mm}{N^{\circ} \, deFiletes} = \frac{25, 4mm}{20} = 1,27mm$$
  $\therefore PM = 1,27mm$ 

4. Se halló la altura métrica, ecuación (6.25):

$$HM = 0.96 PM \implies HM = 0.96 * 1.27mm = 1.22mm \qquad \therefore HM = 1.22mm$$

5. Se calculó el Ø<sub>I</sub>, ecuación (6.21):

$$\emptyset_{I} = \emptyset_{E} - 2HM \implies \emptyset I = 25,4mm * \left(\frac{1}{4}\right) - 2 * (1,22mm) = 4mm \qquad \therefore \emptyset I = 4mm$$

6. Se calculó la tensión a tracción del tornillo, ecuación (6.22):

$$\gamma_{Tracción} = \frac{F}{\pi * R_I^2} = \frac{441,4Kgf}{\pi * \left(\frac{4mm}{2}\right)^2} = 35,1\frac{Kgf}{mm^2} \qquad \therefore \gamma_{Tracción} = 35,1\frac{Kgf}{mm^2}$$

7. Se determinó el factor de diseño, ecuación (6.23):

$$\eta_{Tracción} = \frac{\sigma_{Fluencia} Material Tornillo}{\sigma Tracción Tornillo} = \frac{\frac{162,18 \frac{Kgf}{mm^2}}{35,1 \frac{Kgf}{mm^2}}}{35,1 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 4,6$$

- Calculo del tornillo a corte
- 1. Se calculó el R<sub>I</sub> del tornillo, ecuación (6.26):

$$R_{I} = \sqrt{\frac{F}{\pi * \tau_{Adm.Mat.Tor.Corte}}} * \eta$$

Donde, R<sub>I</sub> = Radio interno del tornillo

F =  $F_D/3 = 1/3$  de la fuerza en el apoyo D de 441,4Kgf.

 $\tau_{Adm.Mat.Tor.Corte}$  = Tensión admisible en corte del material

Г

= 0,25 \* 
$$\sigma_{Fluencia}$$
 = 40,55 Kgf/mm<sup>2</sup>

= Factor de Seguridad de 2.

 $\eta$ 

$$R_{I} = \sqrt{\frac{441,4Kgf}{\pi * 40,55\frac{Kgf}{mm^{2}}} * 2 = 3,7mm} \qquad \therefore R_{I} = 3,7mm$$

$$\emptyset = 2R_1 = 2 * (3,7 \text{ mm})$$
  $\therefore \emptyset_1 = 7,4mm$ 

2. Se normalizó el diámetro del tornillo:

Sistema Métrico

M10x1 Rosca Métrica, con un ángulo de perfil de 60°, diámetro de rosca de  $Ø_E$  = 10mm y paso métrico de 1mm.

Verificación del Tornillo

3. Se halló la altura métrica, ecuación (6.25):

$$HM = 0,86 PM \implies HM = 0,86 * 1mm = 0,86mm \qquad \therefore HM = 0,86mm$$

5. Se calculó el  $Ø_{I}$ , ecuación (6.21):

$$\mathcal{O}_{I} = \mathcal{O}_{E} - 2HM \implies \mathcal{O}_{I} = 10 - 2 (0.86 \text{mm}) = 6.28 \text{mm} \therefore \mathcal{O}_{I} = 8.28 \text{mm}$$

6. Se calculó la tensión a corte del tornillo, ecuación (6.27):

$$\tau_{Corte} = \frac{F}{\pi * R_{I}^{2}} = \frac{441,4Kgf}{\pi * \left(\frac{8,28mm}{2}\right)^{2}} = 8,2\frac{Kgf}{mm^{2}} \qquad \therefore \tau_{Corte} = 8,2\frac{Kgf}{mm^{2}}$$

7. Se determinó el factor de diseño, ecuación (6.28):

$$\eta_{Corte} = \frac{\tau_{Adm.Mat.Tor.Corte}}{\tau_{CorteTornillo}} = \frac{40,55 \frac{Kgf}{mm^2}}{8,2 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Corte} = 5$$

## Sistema Ingles

 $\frac{3}{8}$  \* 16 Rosca Whitworth, con un ángulo del perfil de 55°, diámetro de rosca de Ø<sub>E</sub> =  $\frac{3}{8}$  " y N° de filetes en 1" = 16.

Verificación del Tornillo

4. Se halló el paso métrico, ecuación (6.24):

$$PM = \frac{25,4mm}{N^{\circ} deFiletes} = \frac{25,4mm}{16} = 1,6mm \qquad \therefore PM = 1,6mm$$

5. Se halló la altura métrica, ecuación (6.25):

HM = 0,96 PM 
$$\implies$$
 HM = 0,96 \* 1,6mm = 1,5mm  $\therefore$  HM = 1,5mm

6. Se calculó el  $Ø_I$ , ecuación (6.21):

$$\emptyset_{I} = \emptyset_{E} - 2HM \implies \emptyset I = 25,4mm * \left(\frac{1}{2}\right) - 2 * (1,5mm) = 6,5mm \qquad \therefore \ \emptyset I = 6,5mm$$

7. Se calculó la tensión a corte del tornillo, ecuación (6.27):

$$\tau_{Corte} = \frac{F}{\pi * R_{I}^{2}} = \frac{441.4Kgf}{\pi * \left(\frac{6.5}{2}\right)^{2}} = 13.3\frac{Kgf}{mm^{2}} \qquad \therefore \tau_{Corte} = 13.3\frac{Kgf}{mm^{2}}$$

8. Se determinó el factor de diseño, ecuación (6.28):

$$\eta_{Corte} = \frac{\tau_{Adm.Mat.Tor.Corte}}{\tau_{CorteTornillo}} = \frac{\frac{40,55 \frac{Kgf}{mm^2}}{13,3 \frac{Kgf}{mm^2}}}{13,3 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Corte} = 3$$

El diámetro del tornillo 6 se calculó por tracción ya que no hay otro elemento que junto con la placa tienda a cortarlo. Para este análisis se tuvo en cuenta la fuerza RD total.

- Calculo del tornillo a tracción
- 1. Se calculó el R<sub>I</sub> del tornillo, de la ecuación (6.19):

$$R_{I} = \sqrt{\frac{\kappa * F}{\pi * \sigma_{A}}} * \eta$$

- Donde, K = Coeficiente de Intersección o tensado, se asignó un coeficientes sin intersecciones con un valor K = 1,35
  - F = Fuerza en el apoyo D de 1324,15 Kgf.
  - $\eta$  = Factor de Seguridad de 2
  - R<sub>I</sub> = Radio interno del tornillo

$$\sigma_{A}$$
 = Tensión admisible del material = 162,18  $\frac{Kgf}{mm^{2}}$ 

$$R_{I} = \sqrt{\frac{1,35*1324,15Kgf}{\pi*162,18\frac{Kgf}{mm^{2}}}} * 2 = 3,7mm \qquad \therefore R_{I} = 3,7mm$$

$$Ø_{\rm I} = 2R_{\rm I} = 2 * (3,7mm)$$
  $\therefore \quad Ø_{\rm I} = 7,5mm$ 

2. Se normalizó el diámetro del tornillo:

# Sistema Métrico

M10X1 Rosca Métrica, con un ángulo de perfil de 60°, diámetro de rosca de  $Ø_E$  = 10mm y paso métrico de 1mm. Serie 4.

Verificación del Tornillo

3. Se halló la altura métrica, de la ecuación (6.20):

HM = 0,86 PM  $\implies$  HM = 0,86 \* 1mm = 0,86mm  $\therefore$  HM = 0,86mm

4. Se calculó el  $Ø_{I}$ , de la ecuación (6.21):

 $Ø_{I} = Ø_{E} - 2HM \implies Ø_{I} = 10 - 2 (0,86mm) = 8,28mm$   $\therefore ØI = 8,28mm$ 

5. Se calculó la tensión a tracción del tornillo, de la ecuación (6.22):

$$\gamma_{Tracción} = \frac{F}{\pi * R_I^2} = \frac{1324,15 Kgf}{\pi * \left(\frac{8,28 mm}{2}\right)^2} = 24,6 \frac{Kgf}{mm^2} \qquad \therefore \gamma_{Tracción} = 24,6 \frac{Kgf}{mm^2}$$

6. Se determinó el factor de diseño, de la ecuación (6.23):

$$\eta_{Tracción} = \frac{\sigma_{Fluencia} MaterialTornillo}{\sigma TracciónTornillo} = \frac{\frac{162,18 \frac{Kgf}{mm^2}}{24,6 \frac{Kgf}{mm^2}}}{24,6 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 6,6$$

# Sistema Ingles

 $\frac{1}{2}$  \* 12 Rosca Whitworth, con un ángulo del perfil de 55°, diámetro de rosca de Ø<sub>E</sub> =  $\frac{1}{2}$ " y N° de filetes en 1" = 12.

Verificación del Tornillo

3. Se halló el paso métrico, de la ecuación (6.24):

$$PM = \frac{25, mm}{N^{\circ} \, deFiletes} = \frac{25, 4mm}{12} = 2,12mm$$
  $\therefore PM = 2,12mm$ 

4. Se halló la altura métrica, de la ecuación (6.25):

$$HM = 0.96 PM \implies HM = 0.96 * 2.12mm = 2.04mm$$
  $\therefore HM = 2.04mm$ 

5. Se calculó el  $Ø_{I}$ , de la ecuación (6.21):

$$\emptyset_{I} = \emptyset_{E} - 2HM \implies \emptyset I = 25,4mm * \left(\frac{1}{2}\right) - 2 * (2,04mm) = 8,62mm \qquad \therefore \emptyset I = 8,62mm$$

6. Se calculó la tensión a tracción del tornillo, de la ecuación (6.22):

$$\gamma_{Tracción} = \frac{F}{\pi * R_I^2} = \frac{1324,15Kgf}{\pi * \left(\frac{8,62mm}{2}\right)^2} = 22,7\frac{Kgf}{mm^2} \qquad \therefore \gamma_{Tracción} = 22,7\frac{Kgf}{mm^2}$$

7. Se determinó el factor de diseño, de la ecuación (6.23):

$$\eta_{Tracción} = \frac{\sigma_{Fluencia} MaterialTornillo}{\sigma TracciónTornillo} = \frac{\frac{162,18 \frac{Kgf}{mm^2}}{22,7 \frac{Kgf}{mm^2}}}{22,7 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 5,8$$

El cuadro 26, muestra los tornillos normalizados en sistema métrico en ingles para los puntos de unión de los soportes al flotador (A, B) y al fuselaje (C,D)

| -               |                  |         |          |
|-----------------|------------------|---------|----------|
| Puntos de Unión |                  | Sistema | Sistema  |
|                 |                  | Métrico | Ingles   |
|                 | А                | M12X1,5 | 1/2 * 12 |
|                 | В                | M10X1   | 1/2 * 12 |
|                 | С                | M14X1,5 | 5/8 * 11 |
|                 | 1, 5, 10, 11     | M10X1   | 1/2 * 12 |
| D               | 2, 3, 4, 7, 8, 9 | M10X1   | 3/8 * 16 |
|                 | 6                | M10X1   | 1/2 * 12 |

Cuadro 26. Tornillos normalizados para los puntos de unión de los soportes al flotador y al fuselaje.

Fuente: Autores

# 6.5 DISEÑO DE TORNILLOS PASADORES EN LAS UNIONES DE LOS FITTING A LOS SOPORTES

En el cuadro ... 23 ... se definen las fuerzas axiales de los struts escogidas para el diseño del montante, con estas fuerzas axiales se diseñaron los tornillos pasadores que unen los soportes a los fitting de los struts 1, 2, 3, 4 y 5. El diseño para estos tornillos pasadores es similar para los de su parte contraria 1A', 2B', strut 6, 7 y 8, debido a que se asume que la estructura es simétrica.

La denominación que asignada a los tornillos pasadores es alfanumérica, en la cual el número hace referencia al strut que se conecta al fitting, y la letra se refiere al punto de unión (A, B, C ó D)

Para este análisis se tomo como referencia el diámetro del pasador. A cada pasador se le asignó un diámetro y rosca normalizada en sistema métrico e ingles, y una cabeza semi-redonda se seleccionó para todos los tornillos pasadores, ver Anexo I.

El material seleccionado para el diseño de los tornillos pasadores fue acero AISI 4130, su Resistencia a la Fluencia es  $\sigma_{Fluencia} = 1590 Mpa = 162,18 \frac{Kgf}{mm^2}$ . A continuación se presenta el calculó del diámetro del pasador a tracción y corte, y la rosca estándar asignada. Es de señalar que todos los tornillos pasadores trabajan en corte doble.

**6.5.1 Tornillo pasador 1A.** El pasador 1A se diseñó tomando en cuenta el mayor esfuerzo axial del strut 1 ... cuadro 23 ... por consiguiente obtenemos que:

$$F_1 = 1578,93Lbf = 716,20Kgf$$
- Calculo del pasador a tracción
- 1. Se calculó el R<sub>i</sub> del pasador, ecuación (6.32):

$$R_{I} = \sqrt{\frac{F}{\pi * \sigma_{AD.MAT.PAS.TRACCIÖN}}} * \eta$$
(6.32)

Donde, RI= Radio interno del pasador

- F = Fuerza en el Strut 1 de 716,20Kgf.
- $\eta$  = Factor de Seguridad de 2.

 $\sigma_{\scriptscriptstyle AD.MAT.PAS.TRACCION}$  = Tensión admisible del material del pasador a tracción

=162,18
$$\frac{Kgf}{mm^2}$$

$$R_{I} = \sqrt{\frac{716,20Kgf}{\pi * 162,18\frac{Kgf}{mm^{2}}}} * 2 = 2,4mm \quad \therefore R_{I} = 2,4mm$$

$$\emptyset = 2R_1 = 2 * (2,4mm) \quad \therefore \quad \emptyset_1 = 4,8mm$$

2. Se normalizó el diámetro del pasador:

$$\phi_{PASADOR} = 5mm$$

3. Se calculó la tensión a tracción del pasador, ecuación (6.33):

$$\sigma_{TRACCION.PAS} = \frac{F}{\pi * R^2}$$
(6.33)

Donde,  $\sigma_{TRACCION.PAS}$  = Esfuerzo en tracción del pasador F = Fuerza de tracción R = Radio normalizado del pasador

$$\sigma_{TRACCION.PAS} = \frac{716,20 Kgf}{\pi * \left(\frac{5mm}{2}\right)^2} = 36,5 \frac{Kgf}{mm^2} \qquad \therefore \sigma_{TRACCION.PAS} = 36,5 \frac{Kgf}{mm^2}$$

4. Se determinó el factor de diseño, ecuación (6.34):

$$\eta_{Tracción} = \frac{\sigma_{AD.MAT.PAS.TRACCIÓN}}{\sigma_{TRACCIÓN.PAS}} \ge 1$$
(6.34)

~

Donde,  $\sigma_{AD.MAT.PAS.TRACCIÓN}$  = Tensión admisible del material del pasador en tracción  $\sigma_{TRACCIÓN.PAS}$  = Esfuerzo de tracción

$$\eta_{Tracción} = \frac{162,18 \frac{Kgf}{mm^2}}{36,5 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 4,4$$

- Calculo del pasador a corte
- 1. Se calculó el R<sub>I</sub> del pasador, de la ecuación (6.26):

$$R_{I} = \sqrt{\frac{F}{2 * \pi * \tau_{AD.MAT.CORTE.PAS}}} * \eta$$

 $au_{AD.MAT.CORTE.PAS}$  = Tensión admisible en corte del material del pasador

= 0,25 \* 
$$\sigma_{Fluencia}$$
 = 40,55  $\frac{Kgf}{mm^2}$   
= Factor de Seguridad de 2.

 $\eta$ 

$$R_{I} = \sqrt{\frac{716,20Kgf}{2*\pi*40,55\frac{Kgf}{mm^{2}}}} * 2 = 3,4mm \qquad \therefore R_{I} = 3,4mm$$

$$\emptyset = 2R_1 = 2 * (3,4mm) \therefore \emptyset_1 = 6,8mm$$

2. Se normalizó el diámetro del pasador:

$$\phi_{PASADOR} = 8mm$$

3. Se calculó la tensión a corte del pasador, ecuación (6.35):

$$\tau_{CORTE.PAS} = \frac{F}{\pi * R^2} \tag{6.35}$$

Donde, τ<sub>CORTE.PAS</sub>= Tensión en corte del pasadorF= Fuerza de CorteR= Radio normalizado del pasador

$$\tau_{CORTE.PAS} = \frac{716,20 Kgf}{\pi * \left(\frac{8mm}{2}\right)^2} = 14,25 \frac{Kgf}{mm^2} \quad \therefore \tau_{CORTE.PAS} = 14,25 \frac{Kgf}{mm^2}$$

4. Se determino el factor de diseño, ecuación (6.36):

$$\eta_{CORTE.PAS} = \frac{\tau_{AD.MAT.CORTE.PAS}}{\tau_{CORTE.PASADOR}}$$
(6.36)

Donde,  $\tau_{AD.MAT.CORTE.PAS}$  = Tensión admisible del material del pasador en corte  $\sigma_{CORTE.PAS}$  = Esfuerzo de corte

$$\eta_{CORTE.PAS} = \frac{40,55 \frac{Kgf}{mm^2}}{14,25 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Corte} = 2,8$$

Diámetro y rosca estandarizada para el pasador 1A:

- Sistema Métrico:  $\phi_{PASADOR} = 8mm$
- Sistema Ingles:  $\phi_{PASADOR} = \frac{3}{8} in$

Rosca estandarizada para el pasador 1A:

- Rosca Métrica: M8 x1
- Rosca Whitworth:  $\frac{3}{8}$  x16

**6.5.2** Tornillo Pasador 2B. El pasadores 2B se diseñó tomando el mayor esfuerzo axial del strut 2, presentado en el cuadro 23, se obtuvo que:

$$F_2 = 1072,9Lbf = 486,7Kgf$$

- Calculo del pasador a tracción
- 1. Se calculo el R<sub>1</sub> del pasador, de la ecuación (6.32):

$$R_{I} = \sqrt{\frac{F}{\pi * \sigma_{AD.MAT.PAS.TRACCIÖN}} * \eta}$$

- Donde, RI= Radio interno del pasador
  - F = Fuerza en el Strut 2 de 486,7 Kgf.
  - $\eta$  = Factor de Seguridad de 2.

 $\sigma_{\scriptscriptstyle AD.MAT.PAS.TRACCION}$  = Tensión admisible del material del pasador a tracción

= 162,18 
$$\frac{Kgf}{mm^2}$$
 Donde;

$$R_{I} = \sqrt{\frac{486,7 Kgf}{\pi * 162,18 \frac{Kgf}{mm^{2}}}} * 2 = 1,95 mm \qquad \therefore R_{I} = 1,95 mm$$

$$\emptyset = 2R_{I} = 2 * (1,95mm)$$
  $\therefore \emptyset_{I} = 3,9mm$ 

2. Se normalizó el diámetro del pasador:

$$\phi_{PASADOR} = 4mm$$

3. Se calculó la tensión a tracción del pasador, de la ecuación (6.33):

$$\sigma_{TRACCION.PAS} = \frac{486,7 Kgf}{\pi * \left(\frac{4mm}{2}\right)^2} \qquad \qquad \therefore \sigma_{TRACCION.PAS} = 38,7 \frac{Kgf}{mm^2}$$

4. Se determinó el factor de diseño, de la ecuación (6.34):

$$\eta_{Tracción} = \frac{162,18 \frac{Kgf}{mm^2}}{38,7 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 4,2$$

- Calculo del pasador a corte
- 1. Se calculó el  $R_l$  del pasador, de la ecuación (6.26) :

$$R_{I} = \sqrt{\frac{F}{\pi * \tau_{Adm.Mat.Tor.Corte}}} * \eta$$

| Donde, R <sub>I</sub>              | = Radio interno del tornillo                             |  |  |  |
|------------------------------------|----------------------------------------------------------|--|--|--|
| F                                  | = Fuerza en el Strut 2 de 486,7 Kgf.                     |  |  |  |
| $	au_{\mathit{Adm.Mat.Tor.Corte}}$ | = Tensión admisible en corte del material                |  |  |  |
|                                    | = 0,25 * $\sigma_{Fluencia}$ = 40,55 Kgf/mm <sup>2</sup> |  |  |  |
| $\eta$                             | = Factor de Seguridad de 2.                              |  |  |  |

$$R_{I} = \sqrt{\frac{486,7 Kgf}{2 * \pi * 40,55 \frac{Kgf}{mm^{2}}} * 2 = 2,8mm} \qquad \therefore R_{I} = 2,8mm$$

$$\emptyset = 2R_1 = 2 * (2,8mm) \quad \therefore \quad \emptyset_1 = 5,6mm$$

2. Se normalizó el diámetro del pasador:

$$\phi_{PASADOR} = 6mm$$

3. Se calculó la tensión a corte del pasador, de la ecuación (6.35):

$$\tau_{CORTE.PAS} = \frac{486,7 \, Kgf}{\pi * \left(\frac{6mm}{2}\right)^2} \qquad \qquad \therefore \tau_{CORTE.PAS} = 17,2 \frac{Kgf}{mm^2}$$

4. Se determinó el factor de diseño, de la ecuación (6.36):

$$\eta_{CORTE.PAS} = \frac{40,55 \frac{Kgf}{mm^2}}{17,2 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Corte} = 2,4$$

Diámetro estandarizado para el pasador 2B:

- Sistema Métrico:  $\phi_{PASADOR} = 6mm$
- Sistema Ingles:  $\phi_{PASADOR} = \frac{1}{4}in$

Rosca estandarizada para el pasador 2B:

- Rosca Métrica: M6 x0,5
- Rosca Whitworth:  $\frac{1}{4}$  x20

**6.5.3** Tornillos Pasadores "3A Y 3C". Los pasadores para el strut 3 se diseñaron tomando en cuenta el mayor esfuerzo axial del strut 3 ... Véase cuadro 23 ... por consiguiente obtenemos que:

$$F_3 = 3419,9Lbf = 1551,3Kgf$$

- Calculo del pasador a tracción
- 1. Se calculó el R<sub>1</sub> del pasador, de la ecuación (6.32):

$$R_{I} = \sqrt{\frac{F}{\pi * \sigma_{AD.MAT.PAS.TRACCIÖN}}} * \eta$$

- Donde, RI= Radio interno del pasador
  - F = Fuerza en el Strut 3 de 1551,3 Kgf.
  - $\eta$  = Factor de Seguridad de 2.

 $\sigma_{\scriptscriptstyle AD.MAT.PAS.TRACCION}$  = Tensión admisible del material del pasador a tracción

= 162,18 
$$\frac{Kgf}{mm^2}$$
 Donde;

$$R_{I} = \sqrt{\frac{1551,3Kgf}{\pi * 162,18\frac{Kgf}{mm^{2}}} * 2 = 3,5mm} \qquad \therefore R_{I} = 3,5mm$$

$$\emptyset = 2R_I = 2 * (3,5mm)$$
  $\therefore \emptyset_I = 7mm$ 

2. se normalizó el diámetro del pasador:

$$\phi_{PASADOR} = 8mm$$

3. Se calculó la tensión a tracción del pasador, de la ecuación (6.33):

$$\sigma_{TRACCION.PAS} = \frac{1551,3Kgf}{\pi * \left(\frac{8mm}{2}\right)^2} \qquad \therefore \sigma_{TRACCION.PAS} = 31\frac{Kgf}{mm^2}$$

4. Se determinó el factor de diseño, de la ecuación (6.34):

$$\eta_{Tracción} = \frac{162,18 \frac{Kgf}{mm^2}}{31 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 5$$

- Calculo del pasador a corte
- 1. Se calculó del R<sub>I</sub> del pasador, de la ecuación (6.26):

$$R_{I} = \sqrt{\frac{F}{2 * \pi * \tau_{AD.MAT.CORTE.PAS}}} * \eta$$

Donde, RI= Radio interno del pasadorF= Fuerza en el Strut de 1551,3 Kgf.

 $au_{\mathit{AD.MAT.CORTE.PAS}}$  = Tensión admisible en corte del material del pasador

= 0,25 \* 
$$\sigma_{Fluencia}$$
 = 40,55 Kgf/mm<sup>2</sup>

 $\eta$ 

= Factor de Seguridad de 2.

$$R_{I} = \sqrt{\frac{1551,3Kgf}{2*\pi*40,55\frac{Kgf}{mm^{2}}}*2} = 4,9mm \qquad \therefore R_{I} = 4,9mm$$

$$\emptyset = 2R_1 = 2 * (4,9mm) \quad \therefore \ \emptyset_1 = 9,8mm$$

2. Se normalizó el diámetro del pasador:

$$\phi_{PASADOR} = 10mm$$

3. Se calculó la tensión a corte del pasador, de la ecuación (6.35):

$$\tau_{CORTE.PAS} = \frac{1551,3Kgf}{\pi * \left(\frac{10mm}{2}\right)^2} \qquad \qquad \therefore \tau_{CORTE.PAS} = 19,8\frac{Kgf}{mm^2}$$

4. Se determinó el factor de diseño, de la ecuación (6.36):

$$\eta_{CORTE.PAS} = \frac{40,55 \frac{Kgf}{mm^2}}{19,8 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Corte} = 2$$

Diámetro estandarizado para los pasadores 3A y 3C:

- Sistema Métrico:  $\phi_{PASADOR} = 10mm$
- Sistema Ingles:  $\phi_{PASADOR} = \frac{1}{2}in$

Rosca estandarizada para los pasadores 3A y 3C:

- Rosca Métrica: M10 x1
- Rosca Whitworth:  $\frac{1}{2}$  x12

**6.5.4** Tornillos pasadores "4C Y 4B". Los pasadores para el strut 4 fueron diseñados con el mayor esfuerzo axial del strut 4 ... Véase cuadro 23 ... por consiguiente:

$$F_4 = 2214, 1Lbf = 1004, 3Kgf$$

• Calculo del pasador a tracción

1. se calculó del R<sub>I</sub> del pasador, de la ecuación (6.32):

$$R_{I} = \sqrt{\frac{F}{\pi * \sigma_{AD.MAT.PAS.TRACCIÖN}}} * \eta$$

Donde, R<sub>I</sub>= Radio interno del pasador

F = Fuerza en el Strut 4 de 1004,3 Kgf.

 $\eta$  = Factor de Seguridad de 2.

 $\sigma_{\scriptscriptstyle AD.MAT.PAS.TRACCION}$  = Tensión admisible del material del pasador a tracción

=162,18
$$\frac{Kgf}{mm^2}$$

$$R_{I} = \sqrt{\frac{1004,3Kgf}{\pi * 162,18\frac{Kgf}{mm^{2}}} * 1,725 = 2,8mm} \qquad \therefore R_{I} = 2,8mm$$

$$\emptyset = 2R_1 = 2 * (2,8mm) \quad \therefore \ \emptyset_1 = 5,6mm$$

2. se normalizó el diámetro del pasador:

$$\phi_{PASADOR} = 6mm$$

3. Se calculó la tensión a tracción del pasador, de la ecuación (6.33):

$$\sigma_{TRACCION.PAS} = \frac{1004,3Kgf}{\pi * \left(\frac{6mm}{2}\right)^2} \qquad \therefore \sigma_{TRACCION.PAS} = 36\frac{Kgf}{mm^2}$$

4. Se determinó el factor de diseño, de la ecuación (6.34):

$$\eta_{Tracción} = \frac{162,18 \frac{Kgf}{mm^2}}{36 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 4,5$$

- Calculo del pasador a corte
- 1. Se calculó del R<sub>I</sub> del pasador, de la ecuación (6.26):

$$R_{I} = \sqrt{\frac{F}{\pi * \tau_{AD.MAT.CORTE.PAS}}} * \eta$$

Donde, R<sub>I</sub> = Radio interno del pasador F = Fuerza en el Strut 4 de 1004,3 Kgf.  $\tau_{AD.MAT.CORTE.PAS}$  = Tensión admisible en corte del material del pasador = 0,25 \*  $\sigma_{Fluencia}$  = 40,55  $\frac{Kgf}{mm^2}$  $\eta$  = Factor de Seguridad de 2.

$$R_{I} = \sqrt{\frac{1004,3Kgf}{2*\pi*40,55\frac{Kgf}{mm^{2}}}} * 2 = 3,9mm \qquad \therefore R_{I} = 3,9mm$$

$$\emptyset = 2R_1 = 2 * (3,9mm) \therefore \emptyset_1 = 7,8mm$$

2. Se normalizó el diámetro del pasador:

$$\phi_{PASADOR} = 8mm$$

TZ C

3. Se calculó la tensión a corte del pasador, de la ecuación (6.35):

$$\tau_{CORTE.PAS} = \frac{1004,3Kgf}{\pi * \left(\frac{8mm}{2}\right)^2} \qquad \qquad \therefore \tau_{CORTE.PAS} = 20\frac{Kgf}{mm^2}$$

4. Se determinó el factor de diseño, de la ecuación (6.36):

$$\eta_{CORTE.PAS} = \frac{40,55 \frac{Kgf}{mm^2}}{20 \frac{Kgf}{mm^2}} \qquad \therefore \eta_{Corte} = 2$$

Diámetro estandarizado para los pasadores 4C y 4B:

- Sistema Métrico:  $\phi_{PASADOR} = 8mm$
- Sistema Métrico:  $\phi_{PASADOR} = \frac{3}{8} in$

Rosca estandarizada para los pasadores 4C y 4B:

- Rosca Métrica: M8 x1
- Rosca Whitworth:  $\frac{3}{8}$  x16

**6.5.5 Tornillos Pasadores "5B Y 5D".** Los tornillos pasadores 5B y 5D se diseñaron con el esfuerzo del strut 5 ... Véase cuadro 23 ..., por consiguiente obtenemos que:

$$F_5 = 2901,8Lbf = 1316,3Kgf$$

• Calculo del pasador a tracción

1. Se calculó del R<sub>I</sub> del pasador, de la ecuación (6.32):

$$\pi(R_I)^2 = \frac{F}{\sigma_{AD.MAT.PAS.TRACCIÓN}} \implies R_I = \sqrt{\frac{F}{\pi * \sigma_{AD.MAT.PAS.TRACCIÓN}}} * \eta$$

Donde, R<sub>I</sub>= Radio interno del pasador

- F = Fuerza en el Strut 5 de 1316,3 Kgf.
- $\eta$  = Factor de Seguridad de 2.

 $\sigma_{\scriptscriptstyle AD.MAT.PAS.TRACCION}$  = Tensión admisible del material del pasador a tracción

$$=162,18\frac{Kgf}{mm^2}$$

$$R_{I} = \sqrt{\frac{1316,3Kgf}{\pi * 162,18\frac{Kgf}{mm^{2}}}} * 2 = 3,2mm \qquad \therefore R_{I} = 3,2mm$$

$$\emptyset = 2R_1 = 2 * (3,2mm)$$
 :  $\emptyset_1 = 6,4mm$ 

2. Se normalizó el diámetro del pasador:

$$\phi_{PASADOR} = 8mm$$

3. Se calculó la tensión a tracción del pasador, de la ecuación (6.33):

$$\sigma_{TRACCION.PAS} = \frac{1316,3Kgf}{\pi * \left(\frac{8mm}{2}\right)^2} \qquad \therefore \sigma_{TRACCION.PAS} = 26,2\frac{Kgf}{mm^2}$$

...

4. Se determinó el factor de diseño, de la ecuación (6.34):

$$\eta_{Tracción} = \frac{162,18 \frac{Kgf}{mm^2}}{26,2 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Tracción} = 6,2$$

- Calculo del pasador a corte •
- 1. Se calculo del R<sub>I</sub> del pasador, de la ecuación (6.26):

$$R_{I} = \sqrt{\frac{F}{2 * \pi * \tau_{AD.MAT.CORTE.PAS}}} * \eta$$

= Radio interno del pasador Donde, RI = Fuerza en el Strut 5 de 1316,3 Kgf. F  $\tau_{AD.MAT.CORTE.PAS}$  = Tensión admisible en corte del material del pasador = 0,25 \*  $\sigma_{Fluencia}$  = 40,55  $\frac{Kgf}{mm^2}$ = Factor de Seguridad de 2. η

$$R_{I} = \sqrt{\frac{1316,3Kgf}{2*\pi*40,55\frac{Kgf}{mm^{2}}}} * 2 = 4,6mm \qquad \therefore R_{I} = 4,6mm$$

$$\emptyset = 2R_{I} = 2 * (4,6mm) \quad \therefore \quad \emptyset_{I} = 9,2mm$$

2. Se normalizó el diámetro del pasador:

$$\phi_{PASADOR} = 10mm$$

3. Se calculó la tensión a corte del pasador, de la ecuación (6.35):

$$\tau_{CORTE.PAS} = \frac{1316,3Kgf}{\pi * \left(\frac{10mm}{2}\right)^2} \quad \therefore \tau_{CORTE.PAS} = 16,7\frac{Kgf}{mm^2}$$

4. Se determinó el factor de diseño, de la ecuación (6.36):

$$\eta_{CORTE.PAS} = \frac{40,55 \frac{Kgf}{mm^2}}{16,7 \frac{Kgf}{mm^2}} \qquad \qquad \therefore \eta_{Corte} = 2,4$$

Diámetro estandarizado para los pasadores 5B y 5D:

- Sistema Métrico:  $\phi_{PASADOR} = 10mm$
- Sistema Métrico:  $\phi_{PASADOR} = \frac{1}{2}in$

Rosca estandarizada para los pasadores 5B y 5D:

- Rosca Métrica: M10 x1
- Rosca Whitworth:  $\frac{1}{2}$  x12

En la Figura 71 se observa la unión entre los soportes y los fitting de los montantes.

Figura 71. Unión entre los fitting y los soportes.



Fuente: Autores

#### 6.6 FLUJO DE CORTADURA

El flujo de cortadura fue analizado en solo cuatro cuadernas, donde se supone se presentan las condiciones más criticas de carga. Estas fueron denominadas como Frame Bow Landing, Frame Step Landing, Frame MM y Frame Stern Landing. Las formulas con las que se desarrollaron los cuadros 27, 28, 29 y 30, y se calcularon los flujos de cortadura, se explican a continuación.

$$\overline{Y} = \frac{\sum A_F * Y'}{\sum A_F}$$
(6.37)

| Donde, $\overline{Y}$ | = Distancia Centroidal                                                   |
|-----------------------|--------------------------------------------------------------------------|
| A <sub>F</sub>        | = El área transversal de los stringer, columna 2 cuadros 27, 28, 29 y 30 |
| Ύ                     | = Distancias entre los CG de los stringer, medidas desde el stringer 3,  |
|                       | columna 3 cuadros 27, 28, 29 y 30                                        |

 $\sum A_F * Y' =$ Sumatoria de la columna 4 cuadros 27, 28, 29 y30  $\sum A_F =$ Sumatoria de la columna 2 cuadros 27, 28, 29 y30

Figura 72. Diagrama Explicativo para el Flujo de Cortadura.



Fuente: Autores.

$$Y = Y' - \overline{Y} \tag{6.38}$$

Donde, Y = Distancia del stringer con respecto al centroide de la cuaderna  $X_c$ 

 Y' = Distancias entre los CG de los stringer, medidas desde el stringer 3, columna 3 cuadros 27, 28, 29 y 30

 $\overline{Y}$  = Distancia Centroidal

$$q = \frac{P}{I} * \left( \sum Y * A_F \right) \tag{6.39}$$

Donde, q = Flujo de Cortadura, columna 9.

P = Carga de aterrizaje

I = Momento de Inercia, sumatoria de la columna 7 Cuadros 27, 28, 29 y30.

Cuadro 27. Flujo de cortadura para la cuaderna de 1/5 del forebody.

| BOW LANDING CASE |                                                                            |        |         |         |         |          |                |           |  |
|------------------|----------------------------------------------------------------------------|--------|---------|---------|---------|----------|----------------|-----------|--|
| STRINGER Nº      | Af (in^2) Υ´ (in) Af * Υ´ (in^3) Υ (in) Υ * Af (in^3) Υ^2 * Af (in^4) ΣΥ * |        |         |         |         |          | ΣY * Af (in^3) | q (Lb/in) |  |
| 1                | 11,476                                                                     | 17,731 | 203,484 | 6,914   | 79,349  | 548,629  | 79,349         | 125       |  |
| 2                | 5,653                                                                      | 10,591 | 59,868  | -0,225  | -1,273  | 0,287    | 78,076         | 123       |  |
| 3                | 7,218                                                                      | 0      | 0       | -10,817 | -78,076 | 844,518  | 0              | 0         |  |
| Σ                | 24,347                                                                     |        | 263,352 |         |         | 1393,433 |                |           |  |

Fuente: Autores.

Cuadro 28. Flujo de cortadura para la cuaderna ubicada debajo del C.G.

| UNDER OF THE CENTER OF GRAVITY LANDING CASE |                                                                                            |        |         |         |         |          |        |     |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------|--------|---------|---------|---------|----------|--------|-----|--|
| STRINGER Nº                                 | Af (in^2) Y´ (in) Af * Y´ (in^3) Y (in) Y * Af (in^3) Y^2 * Af (in^4) ΣY * Af (in^3) q (Li |        |         |         |         |          |        |     |  |
| 1                                           | 11,476                                                                                     | 21,02  | 241,234 | 8,048   | 92,364  | 743,369  | 92,364 | 158 |  |
| 2                                           | 5,653                                                                                      | 13,196 | 74,592  | 0,224   | 1,269   | 0,285    | 93,633 | 160 |  |
| 3                                           | 7,218                                                                                      | 0      | 0       | -12,972 | -93,633 | 1214,586 | 0      | 0   |  |
| Σ                                           | 24,34708                                                                                   |        | 315,825 |         |         | 1958,239 |        |     |  |

Fuente: Autores.

Cuadro 29. Flujo de cortadura aplicado en la cuaderna maestra.

| MASTER BULKHEAD LANDING CASE |                                                                                                                                                        |        |         |         |         |          |        |     |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|---------|---------|----------|--------|-----|--|
| STRINGER Nº                  | Af (in^2)         Y' (in)         Af * Y' (in^3)         Y (in)         Y * Af (in^3)         Y^2 * Af (in^4)         ΣY * Af (in^3)         q (Lb/in) |        |         |         |         |          |        |     |  |
| 1                            | 11,476                                                                                                                                                 | 21,937 | 251,752 | 8,299   | 95,240  | 790,372  | 95,240 | 112 |  |
| 2                            | 5,653                                                                                                                                                  | 14,204 | 80,288  | 0,566   | 3,200   | 1,812    | 98,440 | 116 |  |
| 3                            | 7,218                                                                                                                                                  | 0      | 0       | -13,638 | -98,440 | 1342,498 | 0      | 0   |  |
| Σ                            | 24,34708                                                                                                                                               |        | 332,039 |         |         | 2134,682 |        |     |  |

Fuente: Autores.

Cuadro 30. Flujo de cortadura para la cuaderna del 85% del afterbody.

| STERN LANDING CASE |                                                                                                                            |       |         |        |         |         |                |           |
|--------------------|----------------------------------------------------------------------------------------------------------------------------|-------|---------|--------|---------|---------|----------------|-----------|
| STRINGER Nº        | Af (in^2)         Y' (in)         Af * Y' (in^3)         Y (in)         Y * Af (in^3)         Y^2 * Af (in^4)         ΣY * |       |         |        |         |         | ΣY * Af (in^3) | q (Lb/in) |
| 1                  | 11,476                                                                                                                     | 9,473 | 108,710 | 3,598  | 41,287  | 148,536 | 41,287         | 118       |
| 2                  | 5,653                                                                                                                      | 6,073 | 34,327  | 0,198  | 1,119   | 0,221   | 42,406         | 121       |
| 3                  | 7,218                                                                                                                      | 0     | 0       | -5,875 | -42,406 | 249,132 | 0              | 0         |
| Σ                  | 24,34708                                                                                                                   |       | 143,037 |        |         | 397,889 |                |           |

Fuente: Autores.

Para cada cuaderna, y utilizando Solid-Edge, se hallaron las longitudes de arco entre stringers, estos valores son resumidos en la columna 3 del cuadro 31. Con estas longitudes y conociendo el flujo de cortadura calculado anteriormente, columna 9 cuadro 27, 28, 29 y 30, se calculó la carga *P* en cada tramo o porción de arco, los valores de estas cargas son presentados en la columna 5 del cuadro 31.

El diámetro que se asignó a los remaches de frame Bow, Frame MM y Frame Stern fue de  $\frac{5}{32}in$ ; para Frame Step se asignaron remaches de  $\frac{3}{16}in$  porque esta cuaderna tienen cargas más altas. El material seleccionado para éstos fue aluminio 2117T. Los remaches de este material son los más usados por que se instalan directamente sin requerir ningún tipo de tratamiento. Además poseen buena resistencia mecánica y a la corrosión. La resistencia a corte es 9000psi.

$$\tau_{AD.MAT.REMACHE.CORTE} = 9000 \frac{Lbf}{in^2}$$

Se calculó la fuerza en un remache dividiendo la  $\tau_{AD.MAT.REMACHE.CORTE}$  por un factor de seguridad de 1,5, según la siguiente ecuación (6.40).

$$F_{(1)} = \frac{P_C \pi \phi^2}{4} * \frac{\tau_{AD.MAT.REMACHE}.CORTE}{1,5}$$
(6.40)

Donde,  $F_{(1)}$  = Fuerza en un remache  $P_c$  = Planos de corte, igual a 1\*.  $\phi$  = Diámetro del remache  $\tau_{AD.MAT.REMACHE,CORTE}$  = Tensión admisible del material del remache en corte

Para los remaches de 5/32in la fuerza en un remache es:

$$F_{(1)} = \frac{(1)\pi (0.15625in)^2}{4} * \frac{9000\,psi}{1.5}$$

: 
$$F_{(1)} = 115,0486Lbf$$

<sup>\*</sup>los  $P_c$  son iguales al número de placas a unir menos uno. Como la unión es entre dos placas (cuaderna y piel),  $P_c = 1$ 

Para los remaches de 3/16in la fuerza en un remache es:

$$F_{(1)} = \frac{(1)\pi (0.1875in)^2}{4} * \frac{9000 \, psi}{1.5}$$
$$\therefore F_{(1)} = 165,6699 L b f$$

Con estas fuerzas, se calcularon la cantidad de remaches (*i*) para cada tramo, ecuación (6.41). El número de remaches es presentado en la columna 6 del cuadro 31.

$$(i) = \frac{P}{F_{(1)}}$$
(6.41)

Donde, (i) = Número de remaches

 P = Carga total sobre la unión remachada, la cual se calculó para cada tramo de arco, columna 5 cuadro 31

 $F_{(1)}$  = Fuerza en un remache.

Cuadro 31. Calculo del número de remaches

|                     |   | L <sub>arco</sub> (in) | q (Lbf/in) | P (Lbf)   | (i) |
|---------------------|---|------------------------|------------|-----------|-----|
|                     | Α | 5,5906                 | 0          | 0         | 0   |
| Frame Bow Landing   | В | 13,9528                | 123        | 1716,1944 | 15  |
| C C                 | С | 12,6969                | 125        | 1587,1125 | 14  |
|                     | Α | 5,5945                 | 0          | 0         | 0   |
| Frame Step Landing  | В | 17,0354                | 160        | 2725,664  | 16  |
|                     | С | 14,8031                | 158        | 2338,8898 | 14  |
|                     | A | 5,6024                 | 0          | 0         | 0   |
| Frame MM            | В | 16,6850                | 116        | 1935,46   | 17  |
|                     | С | 13,6654                | 112        | 1530,5248 | 13  |
|                     | Α | 5,7323                 | 0          | 0         | 0   |
| Frame Stern Landing | В | 7,8071                 | 121        | 944,6591  | 8   |
|                     | С | 8,3780                 | 118        | 988,604   | 9   |

Fuente : Autores.

Seguidamente se calcularon los factores de diseño en corte y aplastamiento:

# Remache 5/32in

- Factor de diseño en corte.
- 1. Se calculó el esfuerzo de corte, de la ecuación (6.42)

$$\tau_{CORTE.REMACHE} = \frac{F_{(1)}}{\pi \left(\frac{\phi}{2}\right)^2 Pc}$$
(6.42)

Donde,  $\tau_{{\scriptscriptstyle CORTE.REMACHE}}$  = Esfuerzo de corte en el remache

| F <sub>(1)</sub> | = Fuerza en un remache |
|------------------|------------------------|
| $\phi$           | = Diámetro del remache |
| Pc               | = Planos de corte      |

$$\tau_{CORTE.REMACHE} = \frac{115,0486Lbf}{\pi \left(\frac{0,1562in}{2}\right)^2 (1)} \qquad \qquad \therefore \tau_{CORTE.REMACHE} = 6000\,psi$$

2. Se halló el factor de diseño en corte, de la ecuación (6.43)

$$\eta_{CORTE} = \frac{\tau_{ADM.MAT.REMACHE.CORTE}}{\tau_{CORTE.REMACHE}}$$
(6.43)

| Donde, | η                                     | = Factor de diseño en corte                           |
|--------|---------------------------------------|-------------------------------------------------------|
|        | $	au_{\textit{AD.MAT.REMACHE,CORTE}}$ | = Tensión admisible del material del remache en corte |
|        | $	au_{corte.remache}$                 | = Esfuerzo de corte en el remache                     |

$$\eta_{CORTE} = \frac{9000\,psi}{6000\,psi} \qquad \qquad \therefore \eta = 1,5$$

• Factor de diseño en aplastamiento.

1. Se determinó la tensión admisible de aplastamiento, de la ecuación (6.44)

$$\sigma_{ADM,APLASTAMIENTO.MATERIAL.REMACHE} = (2,5-3)\sigma_A$$
(6.44)

| Donde, $\sigma_{\scriptscriptstyle ADM.APLASTAMIENTO.MATERIAL.REMACHE}$ | = Esfuerzo admisible de aplastamiento            |  |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------|--|--|--|
| $\sigma_{\scriptscriptstyle A}$                                         | = Esfuerzo admisible del material, de 36000 psi. |  |  |  |

 $\sigma_{ADM.APLASTAMIENTO.MATERIAL.REMACHE} = (2,5-3)\sigma_r = (2,7)(36000\,psi)$ 

 $\therefore \sigma_{\textit{ADM}.\textit{APLASTAMIENTO}.\textit{MATERIAL.REMACHE}} = 97200 \, psi$ 

2. Se calculó el esfuerzo de aplastamiento, de la ecuación (6.45)

$$\sigma_{APLASTAMIENTO.REMACHE} = \frac{F_{(1)}}{\phi S}$$
(6.45)

| Donde, | $\sigma_{{\scriptscriptstyle APLASTAMIENTO.REMACHE}}$ | = Esfuerzo de aplastamiento            |
|--------|-------------------------------------------------------|----------------------------------------|
|        | F <sub>(1)</sub>                                      | = Fuerza en un remache                 |
|        | $\phi$                                                | = Diámetro del remache                 |
|        | S                                                     | = Espesor de lámina, igual a 0,1181 in |

$$\sigma_{APLASTAMIENTO.REMACHE} = \frac{115,0486Lbf}{(0,1563in)(0,1181in)} \qquad \qquad \therefore \sigma_{APLASTAMIENTO.REMACHE} = 6232,65\,psi$$

3. Se determinó el factor de diseño en aplastamiento, de la ecuación (6.46)

$$\eta_{APLASTAMIENTO.REMACHE} = \frac{\sigma_{ADM.APLASTAMIENTO.MAT.REMACHE}}{\sigma_{APLAST.REMACHE}}$$
(6.46)

Donde,  $\eta_{APLASTAMIENTO.REMACHE}$ = Factor de diseño por aplastamiento $\sigma_{ADM.APLASTAMIENTO.MAT.REMACHE}$ = Esfuerzo admisible de aplastamiento $\sigma_{APLAST.REMACHE}$ = Esfuerzo de aplastamiento

$$\eta_{APLASTAMIENTO.REMACHE} = \frac{97200\,psi}{6232,65\,psi} \qquad \qquad \therefore \sigma_{APLASTAMIENTO.REMACHE} = 15,6$$

# Remache 3/16in

- Factor de diseño en corte.
- 1. Se calculó el esfuerzo de corte, ecuación (6.42)

$$\tau_{CORTE.REMACHE} = \frac{165,6699Lbf}{\pi \left(\frac{0,1875in}{2}\right)^2 (1)} \qquad \qquad \therefore \tau_{CORTE.REMACHE} = 6000\,psi$$

2. Se halló el factor de diseño en corte, de la ecuación (6.43)

$$\eta = \frac{9000\,psi}{6000\,psi} \qquad \qquad \therefore \eta = 1,5$$

• Factor de diseño en aplastamiento.

1. Se determinó la tensión admisible de aplastamiento, de la ecuación (6.44)

 $\therefore \sigma_{APLASTAMIENTO.MATERIAL.REMACHE} = 97200 psi$ 

2. Se calculó el esfuerzo de aplastamiento, de la ecuación (6.45)

 $\sigma_{APLASTAMIENTO.REMACHE} = \frac{165,6699Lbf}{(0,1875in)(0,1181in)} \qquad \qquad \therefore \sigma_{APLASTAMIENTO.REMACHE} = 7481,6psi$ 

3. Se determinó el factor de diseño en aplastamiento, de la ecuación (6.46)

$$\eta_{APLASTAMIENTO.REMACHE} = \frac{97200\,psi}{7481,6\,psi} \qquad \qquad \therefore \eta_{APLASTAMIENTO.REMACHE} = 12,9$$

## 6.7 DISEÑO DE FITTING

Existen muchas incertidumbres concernientes a la distribución de esfuerzos en fittings. Las tolerancias de fabricación son tales que los pernos nunca ajustan perfectamente en los agujeros, y pequeñas variaciones en las dimensiones pueden afectar la distribución de esfuerzos. Un margen adicional de seguridad del 20% es utilizado para el diseño de fittings en aeronaves civiles. Las cargas de diseño se obtuvieron de multiplicar las cargas en cada strut por un factor de seguridad de 1,5 y un factor fitting de 1,2.

Las uniones atornilladas o remachadas se investigan por 4 tipos de fallas: En corte, figura 73; Por apoyo, como se muestra en la figura 74; Por desgarre, como se muestra en la figura 75; y por Tensión, figura 76. Los fittings fueron analizados suponiendo una distribución de esfuerzo promedio o esfuerzo uniforme simple.

Figura 73. Falla por corte



Fuente: Aircraft structures

Figura 74. Falla por apoyo



Fuente: Aircraft structures

Figura 75. Falla por desgarre



Fuente: Aircraft structures

Figura 76. Falla por tensión



Fuente: Aircraft structures

El esfuerzo promedio para cualquiera de los 4 tipos de falla es:

$$\sigma = \frac{P}{A} \tag{6.47}$$

Donde,  $\sigma$  = Esfuerzo promedio

P = Carga

A = Área de la sección transversal sobre el cual puede ocurrir una falla

El margen de seguridad es:

$$MS = \frac{\sigma_A}{\sigma} - 1 \tag{6.48}$$

Donde, *MS* = Margen de seguridad

 $\sigma_{A}$  = Esfuerzo permisible

 $\sigma$  = Esfuerzo obtenido de la carga *P* la cual incluye el factor de seguridad de 1,5 y el factor fitting de 1,2

Cuando el factor fitting se incluye en el esfuerzo  $\sigma$ , el margen de seguridad debe ser 0 o un valor pequeño positivo. Se usaron los siguientes subíndices para designar los tipos de esfuerzos:

 $\tau_A$  y  $\tau$  = Esfuerzos de corte,

 $\sigma_{_{\scriptscriptstyle ABR}}$  y  $\sigma_{_{\scriptscriptstyle BR}}\,$  = Esfuerzos de apoyo,

 $\sigma_{_{AT}}$  y  $\sigma_{_{T}}$  = Esfuerzos de tensión,

 $\sigma_{_{AB}}$  y  $\sigma_{_{B}}$  = Esfuerzos flectores.

El símbolo  $\sigma_{\scriptscriptstyle A}$  representa un esfuerzo permisible, y  $\sigma$  representa un esfuerzo calculado.

El esfuerzo de corte se calcula con el área de la sección transversal del perno o remache.  $A = \pi \phi^2 / 4$ , donde  $\phi$  es el diámetro del perno o remache, el esfuerzo de corte es:

$$\tau = \frac{4P}{\pi\phi^2} \tag{6.49}$$

Donde,  $\tau$  = Esfuerzo de Corte P = Carga  $\phi$  = Diámetro del perno

La falla por apoyo de una unión atornillada, consiste de la elongación del agujero de la placa. Como se observa en la figura 74. El esfuerzo de apoyo permisible usualmente depende de la elongación permisible del agujero. Se asume que el esfuerzo de apoyo se distribuye uniformemente sobre un área  $A = t\phi$ , como se muestra en la figura 74. La ecuación para el esfuerzo de apoyo promedio es:

$$\sigma_{_{BR}} = \frac{P}{t\phi} \tag{6.50}$$

Donde,  $\sigma_{\scriptscriptstyle BR}$  = Esfuerzo de apoyo P = Carga t = Espesor de la chapa  $\phi$  = Diámetro del perno

Si la junta soporta cargas de vibración o choque, como en un miembros del tren de aterrizaje, hay una tendencia mayor a que el agujero del perno se elongue que es cuando la junta resiste únicamente cargas estáticas. En tales casos, el esfuerzo de apoyo debe ser bajo para prevenir el reemplazo frecuente del perno o del buje del agujero, las agencias licenciadas especifican usar un factor de apoyo de 2 o más para obtener los esfuerzos de apoyo cuando la unión atornillada soporta cargas de vibración o de impacto, este factor de apoyo se usa en lugar del factor fitting.

La falla por desgarre de un agujero de perno o remache se muestra en la figura 75, el material de la placa falla en corte sobre un área A = 2xt, el esfuerzo por desgarre es:

$$\tau = \frac{P}{2xt} \tag{6.51}$$

Donde,  $\tau$  = Esfuerzo por desgarre

*x* = Longitud *ab* en la figura 75, pero es habitual usar la longitud *cd* 

De consideraciones practicas, es aconsejable mantener la distancia desde el centro del remache al borde de lamina por lo menos igual a dos veces el diámetro del remache, previniendo la falla por desgarre.

Una unión remachada o atornillada debe ser investigada por una posible falla por tensión a través de los agujeros de remaches o pernos, como se muestra en la figura 76. Se asume que el esfuerzo por tensión se distribuye de forma uniforme sobre el área  $A = (w - \phi)t$  para el fitting atornillado mostrado en la figura 76. El esfuerzo por tensión es:

$$\sigma_t = \frac{P}{(w - \phi)t} \tag{6.52}$$

Donde,  $\sigma_t$  = Esfuerzo por tensión

P = Carga

w = Ancho de la placa

 $\phi$  = Diámetro del perno

6.7.1 Verificación de fitting. Los fitting que conectan los soportes con los struts fueron investigados por los tipos de falla discutidos en la sección anteriormente. A continuación se explica la verificación por corte, apoyo, desgarre y tensión para el fitting 3. De igual forma se analizaron los fitting 4 y 5. Un

resumen de estos resultados es presentado en el cuadro 33. Es de señalar que el análisis para los fitting 6,7 y 8 es similar al de los fitting 3, 4 y 5, puesto que se asume que la estructura del montante es simétrica. Las dimensiones de los fitting 3, 4, 5, 6, 7, y 8 se presentan en el Anexo E.

El material asignado para los Fitting es aluminio 6061-T6 para el cual,  $\sigma_{at} = 40000 Lbf$ ,  $\tau_a = 24000 Lbf$  y  $\sigma_{abr} = 56000 Lbf$ . Está aleación presenta buenas características mecánicas y de resistencia a la corrosión, lo cual es muy importante, ya que por su ubicación, estas piezas estarán mas expuestas al agua. El materia de los pernos es Acero AISI 4130 para el cual  $\sigma_{\scriptscriptstyle at}$  = 90000Lbf ,  $\tau_{\scriptscriptstyle a}$  = 54000Lbf y  $\sigma_{\scriptscriptstyle abr}$  = 126000Lbf .

Las cargas ultimas ó de diseño se obtuvieron de multiplicar las cargas axiales de los struts, columnas 2 y 3 del cuadro 32, por un factor de seguridad de 1,5 y un factor fitting de 1,2. Con estas cargas (cargas diseño fitting), se analizaron las fallas por Corte, desgarre y tensión.

Cuadro 32. Cargas últimas para el diseño de los fitting 3, 4, 5, 6, 7 y 8

|         | т (1 на | 0 (110  | CARGAS DIS | SEÑO FITTING | CARGAS TEORICAS DE APOYO |          |  |
|---------|---------|---------|------------|--------------|--------------------------|----------|--|
|         | I (LDI) | C (LDI) | T (Lbf)    | C (Lbf)      | T (Lbf)                  | C (Lbf)  |  |
| Strut 3 | 1226,81 | 3419,89 | 2208,26    | 6155,80      | 3680,43                  | 10259,67 |  |
| Strut 4 | 1086,41 | 2214,11 | 1955,54    | 3985,40      | 3259,23                  | 6642,33  |  |
| Strut 5 | 2487,40 | 2901,84 | 4477,32    | 5223,31      | 7462,2                   | 8705,52  |  |
| Strut 6 | 1226,81 | 3419,89 | 2208,26    | 6155,80      | 3680,43                  | 10259,67 |  |
| Strut 7 | 1086,41 | 2214,11 | 1955,54    | 3985,40      | 3259,23                  | 6642,33  |  |
| Strut 8 | 2487,40 | 2901,84 | 4477,32    | 5223,31      | 7462,2                   | 8705,52  |  |

Fuente: Autores

Cargas de diseño fitting 3.

compresión

De igual forma se calcularon las *cargas teóricas de apoyo*, usando un Factor de Apoyo de 2 en lugar del factor fitting. Con estas cargas se estudió la falla por apoyo:.

| 1226,81 X 1,5 X 2 = 3680,43 Lbf  | tensión    |
|----------------------------------|------------|
| 3419,89 X 1,5 X 2 = 10259,67 Lbf | compresión |

El perno está en corte doble, por lo que cada sección transversal del perno debe resistir la mitad de la carga de 6155,8 Lbf. De las ecuaciones (6.49) y (6.48):

$$\tau = \frac{4(3077,9Lbf)}{\pi(0,3937in)^2} = 25283,15\frac{Lbf}{in^2}$$

$$MS = \frac{\frac{54000^{Lbf}}{in^2}}{\frac{25283,15^{Lbf}}{in^2}} - 1 = 2$$

El esfuerzo de apoyo se calculó con la mayor de las cargas en tensión y compresión. Para este análisis se asumió que esta carga esta igualmente repartida en cada chapa del Fitting, por lo tanto el esfuerzo de apoyo se calculó con la mitad de la carga de 10259,67 Lbf. De las ecuaciones (6.50) y (6.48), el apoyo del perno sobre el fitting es:

$$\sigma_{br} = \frac{5129,84Lbf}{(0,2756in)(0,3937in)} = 47279,63\frac{Lbf}{in^2}$$

$$MS = \frac{\frac{56000 Lbf}{in^2}}{47279,63 Lbf} - 1 = 0,18$$

La falla por desgarre del agujero del perno se calculó con la distancia *X*, que es igual a dos veces el diámetro del agujero en cuestión. La carga en tensión se usó para calcular el esfuerzo por desgarre,

ya que la carga de compresión no produce esfuerzo sobre esta sección transversal. De la ecuación (6.51) y (6.48):

$$\tau = \frac{2208,26Lbf}{2(0,7874in)(0,2756in)} = 5087,98\frac{Lbf}{in^2}$$

$$MS = \frac{\frac{24000^{Lbf}}{in^2}}{\frac{5087,98^{Lbf}}{in^2}} - 1 = 3,7$$

El esfuerzo de tensión a través del agujero del perno se hallo con las ecuaciones (6.52) y (6.48)

$$\sigma = \frac{2208,26}{(2-0,3937)(0,2756)in^2} = 4988,2\frac{Lbf}{in^2}$$

$$MS = \frac{40000 \ Lbf}{4988,2 \ Lbf} - 1 = 7$$

Cuadro 33. Verificación de fitting por corte, apoyo, desgarre y tensión.

|           | Corte (p.s.i) | MS  | Apoyo (p.s.i) | MS  | Desgarre<br>(p.s.i) | MS  | Tensión<br>(p.s.i) | MS  |
|-----------|---------------|-----|---------------|-----|---------------------|-----|--------------------|-----|
| Fitting 3 | 25283,15      | 1,1 | 47277,96      | 0,2 | 5087,98             | 3,7 | 4988,20            | 7,0 |
| Fitting 4 | 25576,33      | 1,1 | 44637,51      | 0,3 | 6571,81             | 2,7 | 4913,45            | 7,1 |
| Fitting 5 | 21453,22      | 1,5 | 46807,93      | 0,2 | 12036,85            | 1,0 | 11800,80           | 2,4 |
| Fitting 6 | 25283,15      | 1,1 | 47277,96      | 0,2 | 5087,98             | 3,7 | 4988,20            | 7,0 |
| Fitting 7 | 25576,33      | 1,1 | 44637,51      | 0,3 | 6571,81             | 2,7 | 4913,45            | 7,1 |
| Fitting 8 | 21453,22      | 1,5 | 46807,93      | 0,2 | 12036,85            | 1,0 | 11800,80           | 2,4 |

Fuente: Autores

#### 6.8 ANALISIS DE ELEMENTOS DEL FLOTADOR POR MEDIO DE ALGOR.

Las deformaciones y esfuerzos en las pieles inferiores, soportes, cuadernas y refuerzos, fueron estudiadas por medio de Algor. La razón de escoger este programa es por que ofrece el tipo de análisis por elementos finitos necesario para la validación del diseño, *Análisis Estático lineal*, con el programa CAD (Solid-Edge) usando la misma interfaz.

Después de determinar el tipo de análisis, se produjo un modelo de elementos finitos con los parámetros de diseño apropiados, tales como tipo de elemento (Brick), cargas, condiciones de frontera y una calidad de malla apropiada. Los esfuerzos y deformaciones para estos estudios se presentan en el sistema ingles.

Para cada elemento analizado, se presenta la simulación de esfuerzos y deformaciones. Los esfuerzos fueron calculados con el criterio de Von Mises. El programa muestra los esfuerzos y deformaciones en colores. Es así como en la figura 77 la mayor deformación ocurrirá en la zona roja y tendrá un valor de 0.00934 in, mientras que en la zona azul la deformación estará entre 0.00133 in y 0.004 in.

En los modelos, las líneas verdes representan, el elemento no deformado. Se aclara que las deformaciones se muestran a una escala exagerada con el objeto de poderlas apreciar. Las deformaciones y esfuerzos aparecen con el nombre "Displacement" y "Von Mises" respectivamente.

6.8.1 Piles Inferiores. En el análisis de las pieles, las cargas de aterrizaje... sección 5.1 ... fueron distribuidas en forma de presiones sobre un area de la piel que simula los impactos de aterrizaje, colocando restricciones en los lugares donde van montados las cuadernas y stringers. Esto se hizo así, porque es más sencillo analizar solo la piel que de todo el flotador, lo cual requeriría muy buenas capacidades de computador. Los esfuerzos y deformaciones para cada caso de aterrizaje son presentados en las figuras 77, 78 y 79. Es de señalar, que en estos análisis se tienen en cuenta las áreas de interés, es decir donde se presentan los mayores esfuerzos. El material para el diseño de la piel fue aluminio 6061-T6 con un espesor de lámina de 0,063in.



Figura 77. Deformaciones y esfuerzos en carga de proa.

Fuente: Autores


Figura 78. Deformaciones y esfuerzos con carga de rediente.



Figura 79. Deformaciones y esfuerzos con carga de popa.

Para la validación de la piel inferior, se tuvieron en cuenta los mayores esfuerzos: 4263 psi, 5618,4psi y 5969,1psi, tomados de las Figuras 77, 78 y 79 respectivamente. Estos valores fueron comparados con el esfuerzo de fluencia del material (Aluminio 6061-T6, Sy = 40000 Ksi), encontrándose que el diseño propuesto no fallara para cualquier caso.

6.8.2 Soportes. Cada soporte se analizó con los esfuerzos en tensión y compresión más altos de los strut que se ensamblan al mismo. Estos esfuerzos se distribuyeron en forma de presión sobre la mitad del area longitudinal del agujero, considerando que entre el perno y el agujero siempre hay una pequeña holgura. Se aclara que solo se muestra el análisis del soporte A, que es donde se encuentra la mayor fuerza axial, considerándose como la situación más critica de los cuatro soportes.

El material asignado para los soportes fue aluminio 6061-T6, porque es un material que presenta buenas características de resistencia mecánica y contra la corrosión, ver figura 80.



Figura 80. Soportes del montante.

El soporte A fue analizado con las fuerzas axiales en tensión y compresión del strut 3 ... Véase cuadro 32... estas fuerzas son de 1226,8 Lbf y 3419,8 Lbf respectivamente. Dichas fuerzas axiales se distribuyeron en forma de presión sobre la mitad del area longitudinal del agujero de  $\phi$  = 10mm.

Area longitudinal agujero = Perimetro<sub>circulo</sub>\*Espesor =  $(\pi^*\Phi)$ \*Espesor

Area longitudinal agujero =  $(\pi * 0,3937in)*1.1811in=1,4608 in^2$ 

Area longitudinal agujero /  $2 = 0.7304 in^2$ 

Con la Carga en tensión, se obtuvieron deformaciones de 1,8X10<sup>-4</sup> in, y esfuerzos de 2717,9 p.s.i., figura 81. Al analizar la carga en compresión se obtuvieron desplazamientos de 4,7X10<sup>-4</sup> in, y esfuerzos de 7555,3 p.s.i, figura 82.

El mayor esfuerzo se comparó con el esfuerzo de fluencia del material asignado,  $S_Y = 40000$  p.s.i, concluyendo que la pieza no fallará por fractura, ni tendrá una deformación permanente, ya que su mayor esfuerzo está por debajo del esfuerzo de fluencia del material.



Figura 81. Deformación y esfuerzos del soporte A, en tracción.



Figura 82. Deformación y esfuerzos del soporte A, en compresión.

6.8.3 Refuerzos (Stringers). Para el diseño de los refuerzos 1, 2 y 3 se asignaron inicialmente perfiles en "L" con dimensiones de 30x30x4, 20x20x4 y 30x20x4 respectivamente, siendo iguales para los refuerzos de la parte contraria, ver Figura 83. Se asignó aluminio 6061-T6 para los stringer, Se consideraron las presiones mas altas de quilla para el refuerzo 1 y de arista para los refuerzos 2 y 3, restringiendo las geometrías en los puntos de sujeción de estos con la piel y cuadernas. Se resalta que el refuerzo 3 no estará sometido a las mismas presiones de arista que el esfuerzo 2 por su ubicación, sin embargo se analizó así con el objeto de verificar el diseño para los tres esfuerzos, véase figuras 84, 85 y 86.



Figura 83. Designación refuerzos en el flotador

Fuente: Autores.

Del siguiente análisis los mayores esfuerzos son de 2647,3p.s.i., 1700,7p.s.i. y 11556p.s.i., los cuales están por debajo del esfuerzo de fluencia del material, verificándose de este modo que los stringer no fallaran estructuralmente, y la deformación estará por debajo del limite elástico del material.



Figura 84. Análisis de esfuerzos y deformaciones stringer 1.

Figura 85. Análisis de esfuerzos y deformaciones stringer 2.





Figura 86. Análisis de esfuerzos y deformaciones stringer 3.

6.8.4 Cuadernas. Para el diseño de las cuadernas, se aplicaron las *Presiones Distribuidas* ... sección 5.3.2 ... sobre el fondo del flotador para así obtener los esfuerzos de la piel con las cuadernas, véase Figura 87. Posteriormente con los esfuerzos mostrados en dicha figura, se analizaron aquellas cuadernas ubicadas en las tres zonas criticas de aterrizaje, es decir a 1/5 del forebody, debajo del C.G. de la aeronave y al 85% del afterbody. Véase Figura 88



Figura 87. Análisis del Conjunto Piel Inferior con Cuadernas.

227

Figura 88. Cuadernas consideradas críticas.



#### Fuente: Autores

Las cuadernas dan forma y rigidez al flotador, por tanto deben resistir los esfuerzos sin romperse. El material asignado para las cuadernas es Aluminio 7071-T6 con un  $S_Y = 70000 \, p.s.i$ , con un espesor de lamina de 0,08in. Se seleccionó este material porque posee una alta resistencia mecánica.

La verificación del diseño de las cuadernas se basó como en los demás casos, en comparar los esfuerzos obtenidos por medio de *Algor:* 69658p.s.i, 68955p.s.i y 64604p.s.i, con el esfuerzo de fluencia del material, lo que ratifica que el diseño no colapsara en su operación.



Figura 89. Análisis cuaderna a 1/5 del forebody.



Figura 90. Cuaderna situada debajo del CG de la aeronave.

0.71010100





#### 7. PROTECCIÓN CONTRA LA CORROSIÓN EN HIDROAVIONES.

Las estructuras de metal requieren tratamientos contra la corrosión. Aunque las aleaciones de aluminio no se oxidan, estas pueden corroerse, particularmente en un ambiente salino. Frecuentemente la corrosión del aluminio no es evidente hasta cuando esta muy avanzada, en la practica se siguen algunos métodos para proteger las superficies de metal antes y después de ser ensamblados.

Las láminas de aleación de aluminio pueden tener una capa protectora de aluminio puro sobre ambas superficies, esta capa se denomina *Alcad*. También se pueden alodinar. El alodine es un tipo de tratamiento químico de ácido crómico que se aplica sobre el aluminio antes de ser pintado no solo para proteger el material si no también para mejorar el enlace con la pintura, lo que redunda una mejor protección del material.

Sea aluminio o acero, las superficies expuestas al agua deben ser cubiertas con *Primer* después de ser alodinadas o cadmiadas. El primero es una pintura de secado rápido (Fast-Drying-Finish), que deja una base epóxica o de cromato de zinc como pintura final. Hay varios tipos de primer disponibles en el mercado, siendo los de cromato de zinc los más usados para pintar aeronaves pequeñas por ser más livianos y económicos que los epóxicos.

Los hidroaviones que operen en agua salada deben de tener una protección especial adicional a la pintura exterior. Cuando sea posible todas las partes de aleación de aluminio deben estar fabricadas de láminas Alcad, alodinadas y Primeadas. Todos los cables exteriores deben estar cubiertos con Par-Al-Ketone, y revisados tan frecuentemente como sea necesario para mantener una capa continua.

Todas las cabezas de pernos, tuercas y extremos de pernos interiores y exteriores deben tener también una capa de Par-Al-Ketone. A los pernos y tuercas interiores se les da un sello adicional de vaselina. Los pernos y tornillos inoxidables no se pueden emplear como sustitutos para los pernos de acero cadmiado AN (Air Force Navy Estándar Hardware) en estructuras de aleación de aluminio expuestas al agua salada.

Con la atención constante y el chequeo rápido de áreas cruciales después de cada vuelo, los problemas especiales de operación en agua salada no demandarán mantenimiento excesivo. Probablemente el inhibidor a la corrosión mas efectivo es un lavado completo (cuidadoso) con agua fresca inmediatamente después de cada operación, si el lavado no es posible, volar hacia un lago o río de agua fresca cercano y acuatizar 2 o 3 veces, esta última recomendación no va hacer tan efectiva que la primera pero es mejor hacerlo para disminuir en algo la corrosión.

Mantener la aeronave limpia y polichada contribuye más a un acabado final, y por supuesto, suaviza más el arrastre por fricción de las pieles inferiores.

## 8. ANALISIS DE COSTOS.

El análisis de costos que se presenta a continuación, son los gastos que se emplearon para el desarrollo de la investigación, más no los costos de diseño del flotador y sus componentes. Esta aclaración ya es resaltada al principio del trabajo de grado.

Tabla 1. Costos Desarrollo de la investigación

| ANALISIS DE COSTOS                |              |              |           |  |  |  |  |  |  |  |
|-----------------------------------|--------------|--------------|-----------|--|--|--|--|--|--|--|
| DESCRIPCION                       | CANTIDAD     | VALOR UNIDAD | SUBTOTAL  |  |  |  |  |  |  |  |
| TRANSPORTE URBANO                 | 840          | 1.200        | 1.008.000 |  |  |  |  |  |  |  |
| FOTOCOPIAS ( VARIAS )             | 730          | 50           | 36.500    |  |  |  |  |  |  |  |
| PROGRAMAS SOLID EDGE Y ALGOR      | 4            | 15.000       | 60.000    |  |  |  |  |  |  |  |
| INTERNET                          | HORAS<br>240 | 1.500        | 360.000   |  |  |  |  |  |  |  |
| ASESORIAS SOLID EDGE              | HORAS<br>20  | 600          | 12.000    |  |  |  |  |  |  |  |
| ASESORIAS ALGOR                   | HORAS<br>40  | 600          | 24.000    |  |  |  |  |  |  |  |
| AYUDAS TECNOLOGICAS (MEMORIA USB) | 1            | 50.000       | 50.000    |  |  |  |  |  |  |  |
| VISITAS (GUAYMARAL)               | 4            | 8.000        | 32.000    |  |  |  |  |  |  |  |
| COPIAS CD                         | 20           | 2.000        | 40.000    |  |  |  |  |  |  |  |
| CD'S                              | 20           | 800          | 16.000    |  |  |  |  |  |  |  |
| COPIAS ( TRABAJO DE GRADO )       | 2            | 12.500       | 25.000    |  |  |  |  |  |  |  |
| IMPRESIÓN TRABAJO DE GRADO        | 1            | 50.000       | 50.000    |  |  |  |  |  |  |  |
| ARGOLLADA                         | 3            | 3.500        | 10.500    |  |  |  |  |  |  |  |
| TOTAL                             |              |              | 1.724.000 |  |  |  |  |  |  |  |

### 9. CONCLUSIONES.

- Para todos los cálculos realizados en este trabajo se tuvieron en cuenta definiciones vistas en determinadas materias que se estudiaron en el transcurso de la carrera. Cada componente que conforma la estructura y el flotador fue diseñada y verificada por aparte para garantizar su función dentro del diseño.
- Usar en el flotador un fondo en "V" para disminuir las cargas de impacto, lo que redunda en estructuras menos robustas. De igual forma, este fondo debe ser acampanado hacia los extremos con un radio de curvatura no muy pequeño como medio para disminuir el spray.
- Para aeronaves terrestres convertidas en hidroaviones se deben tener en cuenta programas de control de corrosión que contemplen procedimientos mínimos y/o recomendados para salvaguardar la aeronavegabilidad.
- Existen diversas fuentes en el diseño de hidroaviones o canoas volantes. Sin embargo para diseñar flotadores aplicados a aeronaves pequeñas los cálculos deben basarse en literatura especializada para estos, de lo contrario si todo el diseño se basa en la teoría de canoas volantes, es muy probable que obtenga flotadores sobredimensionados o muy robustos.
- El convertir una aeronave terrestre en un hidroavión aumenta su versatilidad, pero disminuye su capacidad de carga útil ya que se cambian las ruedas por flotadores.
- El material con el que se diseñen los flotadores debe reunir ciertos requisitos como son la ligereza, resistencia a la corrosión, resistencia mecánica, economía y facilidad de reparación.

- El ángulo Dead Rise tiene un papel importante en el diseño del fondo del flotador, al aumentar este ángulo disminuye las cargas de impacto, pero un ángulo excesivo es inconveniente puesto que aumenta el peso estructural.
- Las reacciones más altas para los puntos de apoyo A y C de la estructura del montante se dan para el caso de aterrizaje de Proa, sin embargo para los puntos de apoyo B y D se dan en el caso de aterrizaje Asimétrico.
- El estudio que se ha realizado en este trabajo de grado es un avance al diseño aeronáutico en Colombia, empezando así a creer que la industria aeronáutica puede ser sacada del atraso en la que está sometida por la poca importancia que se le da a este campo en nuestro país. Al mismo tiempo éste abre una puerta hacia futuros estudios y diseños para el mejoramiento del hidroavión.

#### **10. RECOMENDACIONES.**

- En la etapa de Preprocesador del programa Algor es importante determinar la calidad de la malla, es decir, que densidad respecto al número de elementos finitos van a tener las geometrías al ser analizadas. Entre mas fina sea la malla se obtienen resultados mas precisos pero se requieren mayores capacidades del computador y tiempos de análisis que con una malla menos densa. Se debe lograr un compromiso entre exactitud en los resultados y recursos disponibles de computador.
- A menos que se disponga de un computador poderoso, los radios de entalle y agujeros se deben evitar en las geometrías en pro de disminuir los tiempos de análisis.
- Se recomiendan los siguientes requerimientos para los análisis con Algor: Procesador Atlon ó miel Pentium IV I; Memoria de 1Giga ; Disco duro de 160 Gigas; Tarjeta de Video independiente del procesador.
- Verificar los archivos de piezas y conjunto diseños en Solig Edge, antes de hacer la interfase con Algor, para asegurar que éstos no tengan errores de dibujo, los cuales generan problemas en el enmallado.
- Se recomienda verificar los struts por pandeo para que las cargas en compresión no sobrepasen la carga admisible por pandeo de cada strut.
- Analizar los factores de carga en vuelo η, para los posibles virajes de la aeronave y su efecto en la estructura del flotador.
- Estudiar el efecto aerodinámico que tendría la adición de una aleta vertical en el comportamiento del estabilizador horizontal

#### BIBLIOGRAFIA.

AIRCRAFT SPECIFICATIONS No.1A2. [Documento en línea]. Florida, Estados Unidos. The New Piper Aircraft. September 4, 1996. [citado en 2005-08-15]. Available from world wide wed: <<u>http://www.airweb.faa.gov/Regulatory\_and\_Guidance\_Library%5CrgMakeModel.nsf/0/AD0084716C</u> 91470F8525673900566909/\$FILE/1a2.pdf>

ATP Navigator V. [Programa de computador en CD-ROM]. V Versión. California, Estados Unidos. Aircraft Technical Publishers. 2004-. Revision 21 Octubre 2005. [citado en 2005-10-25]. Requerimientos del sistema: Microsoft<sup>®</sup> Windows<sup>®</sup> 98<sup>2</sup>/ 2000<sup>3</sup>/ NT<sup>®4</sup>/ XP; Memory: 120 MB RAM (256 recommended); Hard Drive Space: 500 MB (1GB recommended); Proccesor Speed: 266 MHz Pentium II (700 MHz Pentium recommended); CD-ROM drive (DVD-ROM drive recommended). Actualizado bisemanalmente.

CUTLER, John. Estructuras del Avión. Madrid : Paraninfo, 1992. p.37-96.

D. HISCOCKS, Richard. Design of Light Aircraft. Canada : Patricia Hiscocks, 1995. 281 p. DIEHL, W. S. Technical Notes National Advisory Committee for aeronautics No. 183, Static stability of seaplane floats and hulls. [documento en línea]. NACA. March 1924. [citado en 2005-08-15]. Formato PDF/Adobe Acrobat. Available from world wide wed: <http://naca.larc.nasa.gov/digidoc/report/tn/83/NACA-TN-183.PDF>.

DE LA MALLA F. Hidroavión. <u>En</u> : Enciclopedia de Aviación y Astronáutica. Barcelona, España. Garriga, 1972. Tomo 3, p. 809-812.

DIEHL, W. S. Technical Notes National Advisory Committee for aeronautics No. 183, Static stability of seaplane floats and hulls. [documento en línea]. NACA. March 1924. [citado en 2005-08-15]. Formato PDF/Adobe Acrobat. Available from world wide wed: <<u>http://naca.larc.nasa.gov/digidoc/report/tn/83/NACA-TN-183.PDF</u>>.

DUSSÁN A., Jairo. El Hidroavión : Navegación Aérea en Girardot. [documento en línea]. 07 de Agosto de 2004. [citado en 2005-04-09]. Disponible en Internet en: <http://www.cybergirardot.com/hidroavion.htm>

HIBBELER, R. C. Análisis estructural. 3 ed. Mexico : Prentice Hall Hispanoamericana, 1997.

HIDROAVIACIÓN Capitulo vigesimotercero [documento en línea]. s.f. [citado en 2005-04-9]. Formato PDF/Adobe Acrobat. Disponible Internet: en eherrera.aero.upm.es/obra/aerotec/pdf/cap\_23.pdf mediante www.googe.com buscando por la hidroavión. Disponible también versión HTML palabra en en: http://www.google.com/search?g=cache:zadf7nK6xWcJ:eherrera.aero.upm.es/obra/aerotec/pdf/cap 23.pdf+hidroavion&h l=es

INSTITUTO COLOMBIANO DE NORMAS TECNICAS Y CERTIFICACION. Compendio, tesis y otros trabajos de grado. Quinta Actualización. Bogotá : ICONTEC, 2003.

P. BEER, Ferdinand y RUSSELL JOHNSTON, E. Mecánica vectorial para ingenieros : Estática. 6 ed. España : McGraw-Hill, 1997.

ROSKAM, Jan. Preliminary Sizing of Airplanes. Ottawa, Kansas : Roskam Aviation and Engineering Corporation, 1985. p. 24, 103. (Airplane Design ; no. 1)

SOTTORF, W. Technical Memorandums National Advisory Committee for aeronautics, The design of floats. [documento en línea]. Washington. NACA. 1938. [citado en 2005-10-25]. Formato PDF/Adobe Acrobat. Available from world wide wed: <<u>http://naca.larc.nasa.gov/digidoc/report/tm/60/NACA-TM-860.PDF</u>>.

THURSTON, David. Design for flying. 2 ed. Estados Unidos : TAB Books, 1995. 308 p.

UNIGRAPHICS SOLUTIONS INC. Solid Edge. [CD-ROM]. Version 12.00.00.66. Sao Caetano do Sul, Brasilg. Apache Software Foundation. 06-Aug-2002. [citado en 2006-03-21]. Requerimientos de Hardware del Sistema: Requisitos óptimos: CPU Procesador Intel Pentium®III o Pentium®4 de Intel, o AMD Athlon®; MEMORIA al menos 512 Mb de memoria RAM; ADAPTADOR DE GRÁFICOS/PANTALLA Resolución mínima: 1024x768, acelerador OpenGL con 65.536 colores.

V. GILES, Ranal; B. EVETT, Jack y LIU M., Cheng. Mecánica de los Fluidos e hidráulica. 3 ed. España : McGraw-Hill, 1994.

## ANEXO A.

## DATOS DE PESO PARA AERONAVES DE UN SOLO MOTOR

| Table A1.1a Group We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ight              | Data f                                                                                                                                                                                                                             | or Sin                      | gle En                                                                                                          | gine P                                                                                                          | ropeller |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|--|--|--|
| Driven /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>M</b> rpla     | ines                                                                                                                                                                                                                               |                             |                                                                                                                 |                                                                                                                 |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>The set of</b> |                                                                                                                                                                                                                                    |                             |                                                                                                                 |                                                                                                                 |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                                                                                                                                                                    |                             |                                                                                                                 |                                                                                                                 |          |  |  |  |
| TYPe -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cess              | na                                                                                                                                                                                                                                 |                             |                                                                                                                 |                                                                                                                 |          |  |  |  |
| Majakk Then the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150               | 172                                                                                                                                                                                                                                | 175                         | 180                                                                                                             | 182                                                                                                             | L-19A+   |  |  |  |
| weight item, ibs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                                                                                                                                                                                                                    |                             | **                                                                                                              |                                                                                                                 | * *      |  |  |  |
| Wind Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44.6              | 0.0. <i>4</i>                                                                                                                                                                                                                      |                             |                                                                                                                 |                                                                                                                 |          |  |  |  |
| Espennage Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 210               | 226                                                                                                                                                                                                                                | 227                         | 235                                                                                                             | 235                                                                                                             | 238      |  |  |  |
| Fuselage Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                | 37                                                                                                                                                                                                                                 | 37                          | 62                                                                                                              | 62                                                                                                              | 64       |  |  |  |
| Nacelle Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33                | 225                                                                                                                                                                                                                                | 331                         | 404                                                                                                             | 400                                                                                                             | 216      |  |  |  |
| Landing Gear Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104               | 4.7                                                                                                                                                                                                                                | 50                          | 32                                                                                                              | 34                                                                                                              | 33       |  |  |  |
| Nose Gear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104               | 7 T T                                                                                                                                                                                                                              | 111                         | 112                                                                                                             | 132                                                                                                             | 135      |  |  |  |
| Main Gear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                    |                             |                                                                                                                 |                                                                                                                 |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                                                                                                                                                                    |                             |                                                                                                                 |                                                                                                                 |          |  |  |  |
| Structure Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 609               | 774                                                                                                                                                                                                                                | 776                         | 944                                                                                                             | 96.3                                                                                                            | 101      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the second    |                                                                                                                                                                                                                                    | e e v<br>State - Alexandria | 942                                                                                                             | 000                                                                                                             | 0 8 9    |  |  |  |
| Engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 197               | 254                                                                                                                                                                                                                                | 31.8                        | 417                                                                                                             | 41.7                                                                                                            | 20.0     |  |  |  |
| Air Induct, System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                 | 1                                                                                                                                                                                                                                  | 1                           | 1                                                                                                               | 74 (                                                                                                            | 399      |  |  |  |
| Fuel System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17                | 21                                                                                                                                                                                                                                 | 26                          | 26                                                                                                              | 26                                                                                                              | 10       |  |  |  |
| Propeller Install.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                | 33                                                                                                                                                                                                                                 | 33                          | 64                                                                                                              | 64                                                                                                              | 4.6      |  |  |  |
| Engine Install.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                | 36                                                                                                                                                                                                                                 | 36                          | 37                                                                                                              | 37                                                                                                              | 62       |  |  |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                                                                                                                                                                                                                    |                             | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - | n y<br>Service de la service                                                                                    |          |  |  |  |
| Power Plant Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 267               | 345                                                                                                                                                                                                                                | 416                         | 545                                                                                                             | 545                                                                                                             | \$ \$ 0  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                                                                                                                                                                    | and the second second       |                                                                                                                 | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |          |  |  |  |
| Avionics + Instrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | в                 | - 4                                                                                                                                                                                                                                | 4                           | 6                                                                                                               | 6                                                                                                               | 36       |  |  |  |
| Surface Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31                | 31                                                                                                                                                                                                                                 | 81                          | 36                                                                                                              | 36                                                                                                              | 47       |  |  |  |
| Electrical System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34                | 38                                                                                                                                                                                                                                 | 38                          | 43                                                                                                              | 43                                                                                                              | 86       |  |  |  |
| Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                 | 0                                                                                                                                                                                                                                  | 0                           | 0                                                                                                               | 0                                                                                                               | 39       |  |  |  |
| Air Cond. System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                 | 1                                                                                                                                                                                                                                  | 1                           | -                                                                                                               |                                                                                                                 |          |  |  |  |
| Anti-icing System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                                                                                                                                                                                                                    |                             |                                                                                                                 | *                                                                                                               | ,        |  |  |  |
| Furnishings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33                | 85                                                                                                                                                                                                                                 | 8.5                         | 87                                                                                                              | 87                                                                                                              | 65       |  |  |  |
| MUNIFIARY Gear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                 | 0                                                                                                                                                                                                                                  | 0                           | Φ.                                                                                                              | 0                                                                                                               | 3        |  |  |  |
| Rived Postanth Makel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -<br>1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |                             | and the second second                                                                                           | -                                                                                                               |          |  |  |  |
| sixed pderbulc local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102               | 159                                                                                                                                                                                                                                | 159                         | 173                                                                                                             | 173                                                                                                             | 2.85     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                                                                                                                                                                    |                             |                                                                                                                 |                                                                                                                 |          |  |  |  |
| With the state of | 1.1               |                                                                                                                                                                                                                                    |                             |                                                                                                                 |                                                                                                                 |          |  |  |  |
| "oil "tof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T T               | 13                                                                                                                                                                                                                                 | 19                          | 22                                                                                                              | 22                                                                                                              | 19       |  |  |  |
| Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 154               | 2.53                                                                                                                                                                                                                               | 9 H A                       | 8.0 A                                                                                                           |                                                                                                                 |          |  |  |  |
| Payload                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39.8              | 709                                                                                                                                                                                                                                | 710                         | 390                                                                                                             | 390                                                                                                             | 252      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 10.0                                                                                                                                                                                                                               | 172                         | 104                                                                                                             | 172                                                                                                             | 321      |  |  |  |
| •Military observation airplane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                    |                             |                                                                                                                 |                                                                                                                 |          |  |  |  |

\*\*Taildragger

Table A2.1b Group Weight Data for Single Engine Propelle: Driven Airplanes

| Type                                  | Cessn<br>150 | a<br>172 | 175   | 180   | 182   | L~19A* |
|---------------------------------------|--------------|----------|-------|-------|-------|--------|
| Plight Design<br>Gross Weight,        |              |          |       | ••    |       | ••     |
| GW, 1bs                               | 1,500        | 2,200    | 2,350 | 2,650 | 2,650 | 2,100  |
| Structure/GW                          | 0.406        | 0.352    | 0.330 | 0.319 | 0.326 | 0.327  |
| Power Plant/GW                        | 0.178        | 0.157    | 0.177 | 0.206 | 0.206 | 0.262  |
| Fixed Equipm't/GW                     | 0.068        | 0.072    | 0.068 | 0.065 | 0.065 | 0.136  |
| Empty Weight/GW                       | 0.631        | 0.565    | 0.561 | 0.576 | 0.583 | 0.727  |
| Wing Group/GW                         | 0.144        | 0.103    | 0.097 | 0.089 | 0.089 | 0.113  |
| Empenn. Group/GW                      | 0.024        | 0.026    | 0.024 | 0.023 | 0.023 | 0.030  |
| Puselage Group/GW                     | 0.154        | 0.160    | 0,149 | 0,152 | 0.151 | 0.103  |
| Nacelle Group/GW                      | 0.015        | 0.012    | 0.013 | 0,012 | 0.013 | 0.016  |
| Land. Gear Group/GW                   | 0.069        | 0.050    | 0.047 | 0.042 | 0.050 | 0.064  |
| Take-off Gross                        |              |          |       |       |       |        |
| Wht, W <sub>TO</sub> , 1bs            | 1,500        | 2,200    | 2,350 | 2,650 | 2,650 | 2,100  |
| Empty Weight,                         |              |          |       |       |       |        |
| W <sub>E</sub> , 1bs                  | 946          | 1,243    | 1,319 | 1,526 | 1,545 | 1,527  |
| Wing Group/S, psf                     | 1.4          | 1.4      | 1.3   | 1.3   | 1.3   | 1.4    |
| Emp. Grp/S <sub>emp</sub> , psf       | 0.85         | 1.1      | 1.1   | 1.2   | 1.2   | 1.2    |
| Ultimate Load                         |              |          |       |       |       |        |
| Pactor, g's                           | 5.7          | 5.7      | 5.7   | 5.7   | 5.7   | 5.7    |
| Surface Areas, ft <sup>2</sup>        |              |          |       |       |       |        |
| Wing, S                               | 160          | 175      | 175   | 175   | 175   | 174    |
| Boriz. Tail, S <sub>h</sub>           | 28.5         | 34.6     | 34.6  | 34.6  | 34.1  | 35.2   |
| Vert. Tail, S <sub>v</sub>            | 14.1         | 18.4     | 18.4  | 18.4  | 18,4  | 18.4   |
| Empenn. Area, S <sub>emp</sub>        | 42.6         | 53.0     | 53.0  | 53.0  | 52.5  | 53.6   |
| *Hilitary observatio<br>**Taildragger | on airp      | lane     |       |       |       |        |

| Driven A            | irplanes                  |       |         |          |             |
|---------------------|---------------------------|-------|---------|----------|-------------|
|                     |                           | •     |         |          |             |
|                     | Control                   | Beech | Saab    | Rockwell | Cessna      |
| Type                | 2103                      | 3-35  | Safir   | 112TCA   | 210J        |
| weight Them. 1bs.   |                           | 0     | _       |          |             |
| Weight Item, 100.   |                           |       |         |          |             |
| Wing Group          | 261                       | 379   | 276     | 334      | 335         |
| Empenhage Group     | 71                        | 58    | 60      | 98       | 80<br>40 98 |
| Fuselage Group      | 316*                      | 200   | 386     | 338      | 400-        |
| Nacelle Group       | 31                        | 62    | in fus. | 01       | 404         |
| Landing Gear Group  | 207                       | 205   | 119     | 161      | 191         |
| Nose Gear           |                           |       |         | 35       | 141         |
| Main Gear           |                           |       |         | 126      | 141         |
| Structure Total     | 8 86                      | 904   | 841     | 1,082    | 1,048       |
| Seruccare second    |                           | -     |         |          | 4 5 0       |
| Engine              | 390                       | 432   |         | 4/3      | 420         |
| Air Induct. System  |                           | 3     |         | 1.2      | 24          |
| Fuel System         |                           | 30    |         | in and   | 64          |
| Propeller Install.  |                           | 73    |         | in eng.  | 36          |
| Engine Install.     |                           | 45    |         | 0.5      |             |
| Power Plant Total   | 577                       | 5 83  |         | 5 57     | 5 81        |
|                     | 10 10 10 17 17 1<br>1 1 1 |       |         | 64       | 18          |
| Avionics + Instrum. | 10                        | 10    | in fur  | 44       | 48          |
| Surface Controls    |                           | 2.4   |         | 10       | 51          |
| Bydraulic System    |                           |       |         | #1       | 57          |
| Electrical System   | 00                        | 12    |         |          |             |
| Air Cond. System    | 12                        | 11    |         | in misc. | 10          |
| Anti-icing System   | 114                       | 174   |         | 179      | 130         |
| Furnishings         | 110                       |       | 0       | 2.0      | 0           |
| Oxygen System       | ~                         |       | õ       | 21       | 0           |
| Ballast             | 0                         | , a   | ō       | 2        | 0           |
| Auxiliary Gear      | 2.0                       | ā     | õ       | 2.4      | •           |
| Misc. Equipment     | 2.4                       | ų.    |         |          | 21          |
| Paint               |                           |       |         |          |             |
| Fixed Equipm't Tota | 1 272                     | 334   |         | 445      | 335         |
| W. 13 * Want        |                           | 11    |         | 31       | 24          |
| 011 101             |                           |       |         | 230      | 464*        |
| Fuel (max. payload) | )                         | 234   |         | 746      | 693         |
| perioad             |                           | 84.5  |         | 144      |             |

\*Includes wing-fuselage carry-through spars \*\*Maximum fuel

#### Table A2.2b Group Weight Data for Single Engine Propeller Driven Airplanes ------Type Cessna Beech Saab Rockwell Cessna 210A J-35 Safir 112TCA 210J Flight Design Gross Weight, 2,900 2,900 GW. 1bg 2,660 2,954 3,400 Structure/GW 0.306 0.312 0.316 0.366 0.308 Power Plant/GW 0.199 0.201 0.189 0.171 Fixed Equipm't/GW 0,094 0.1150.151 0.099 Empty Weight/GW 0.598 0.628 0.620 0.705 0.578 Wing Group/GW 0.090 0.131 0.104 0.113 0.099 Empenn. Group/GW 0.024 0.020 0.023 0.033 0.025 Puselage Group/GW 0,109 0.069 0,145 0.121 0.120 Nacelle Group/GW 0,011 0.021 0.021 0.008 Land. Gear Group/GW 0.071 0.071 0.045 0.055 0.056 Take-off Gross Wht. W<sub>ro</sub>. 1bs 2,900 2,900 2,660 2,954 3,400 Empty Weight, W<sub>g</sub>, lbs 1.735 1,821 1,650 2.084 1.964 Wing Group/S, psf 1.5 2.1 1.9 2.2 1.9 Emp. Grp/Semp, psf 1.3 1.6 1.4 2.0 1.5 Ultinate Load Pactor, g's 5.7 5.7 Surface Areas, ft<sup>2</sup> Wing, S 176 -178 146 152 176 Boriz. Tail, Sh 38,6 . 27.6\*\* 32.0 38.6 Vert. Tail, S. 17.2 . 14.3\*\* 17.0 17.2 Empenn. Area, S<sub>emp</sub> 55.8 35.8 41.9 49.0 55.8 \*V-tail \*\*Estimated

## ANEXO B.

# DISTANCIAS DESDE LOS CG DELANTERO Y TRASERO A LAS CUADERNAS DE 1/5 FOREBODY Y 85% AFTERBODY



## ANEXO C.

## PROPIEDADES MATERIALES SELECCIONADAS EN EL DISEÑO

|          |                    |                        | PROPIEDADES DE LOS MATERIALES |                           |                                    |                        |              |                     |                        |                        |                             |                                                       |            |                |            |              |
|----------|--------------------|------------------------|-------------------------------|---------------------------|------------------------------------|------------------------|--------------|---------------------|------------------------|------------------------|-----------------------------|-------------------------------------------------------|------------|----------------|------------|--------------|
|          |                    | COEFIE(<br>EXPANSIÓN   | CIENTE DE<br>N TERMICA(α)     | PESO<br>ESPECIFÍCO<br>(y) | RESISTENCIA A<br>LA<br>TENSIÓN(Su) | DENS                   | IDAD(ρ)      | MODU<br>Elast<br>(I | ilo de<br>Icidad<br>E) | MODU<br>ELAST<br>CORTA | ILO DE<br>TCIDAD<br>NTE (G) | ESFUERZO<br>FLUENCIA( <b>σ</b> s) ÚLTIMO( <b>σ</b> u) |            | RELACION<br>DE |            |              |
| MATERI   | ALES               | °F^-1                  | °C ^-1                        | Lb/ft^3                   | Ksi                                | Slug/ft^3              | Kg/m ^ 3     | Ksi                 | Gpa                    | Ksi                    | Gpa                         | Ksi                                                   | Мра        | Ksi            | Мра        | REPUISSON    |
| ALUMINIO | 6061-T6<br>7075-T6 | 13x10^-6<br>12.9x10^-6 | 23,4x10^-6<br>23.2x10^-6      | 0,98<br>0.101             | 45<br>83                           | 5,2x10^-3<br>5.4x10^-3 | 2700<br>2800 | 10000<br>10400      | 70<br>72               | 3800<br>3900           | 26<br>27                    | 40<br>70                                              | 270<br>480 | 45<br>80       | 310<br>550 | 0,33<br>0.33 |
| ACERO    | AISI 4130          | 7,5x10^-6              | 13,49x10^-6                   | 0,283                     | 90                                 | 8,8x10^-3              | 4570         | 29000               | 201                    | 11000                  | 76                          | 70                                                    | 480        | 90             | 618        | 0,3          |

### ANEXO D.

## **TUBOS PERFILADOS**

Axis Viail Thickness Wail Thickness Thickness Mile trailing edge intermittently for many years and it has been a worrisome problem for builders. In an effort to control the situation, Columbia Summeril have installed sophisticated inspection equipment in their plant to assure that no cracked lubing gets into the field again. The cost of the equipment is reflected in the prices for the tubing which must be shared by all.

| Major<br>Axis | Minor<br>Axis | Wall | Equivalent<br>Round Tubing<br>Tension Compr. |        | Wt./<br>Ft. | Part No. | Price<br>Per Ft |
|---------------|---------------|------|----------------------------------------------|--------|-------------|----------|-----------------|
| 1.012         | .428          | .035 | 3/4"                                         | 1/2*   | .2697       | 03-11300 | \$16.80         |
| 1.190         | .500          | .035 | 7/8"                                         | 7/16"  | .3140       | 03-11400 | \$13.90         |
| 1.349         | .571          | .049 | 1                                            | 5/8*   | .4977       | 09-11500 | \$12.90         |
| 1.685         | .714          | .049 | 1-1/4                                        | 3/4*   | .6295       | 09-11600 | \$12.20         |
| 2.023         | .957          | .049 | 1-1/2                                        | 1*     | .7593       | 09-11700 | \$21.20         |
| 2.360         | 1.000         | .049 | 1-3/4                                        | 1-1/8" | .8902       | 03-11800 | \$19.10         |
| 2.697         | 1.143         | .049 | 2                                            | 1-1/4" | 1.021       | 03-11900 | \$37.30         |
| 3.372         | 1.429         | .049 | 2-1/2                                        | 1-1/2" | 1.283       | 03-12000 | \$39.70         |

Fuente: Aircraft Spruce 2005-2006 Catalog

## Equivalencia de Tubos Perfilados en Tubos Redondos para Tensión o Compresión.

| ſ |                            | Tubo Redondo E      | quivalente TENSION         |               |  |
|---|----------------------------|---------------------|----------------------------|---------------|--|
| I | Diametro Mayor (D)<br>(in) | Espesor (t)<br>(in) | Diametro menor (d)<br>(in) | Area<br>(in2) |  |
| ſ | 0,75                       | 0,0350              | 0,7150                     | 0,04027       |  |
| I | 0,875                      | 0,0350              | 0,8400                     | 0,04714       |  |
| I | 1                          | 0,0490              | 0,9510                     | 0,07508       |  |
| I | 1,25                       | 0,0490              | 1,2010                     | 0,09433       |  |
| I | 1,5                        | 0,0490              | 1,4510                     | 0,11357       |  |
| I | 1,75                       | 0,0490              | 1,7010                     | 0,13281       |  |
| I | 2                          | 0,0490              | 1,9510                     | 0,15205       |  |
| 1 | 2,5                        | 0,0490              | 2,4510                     | 0,19054       |  |

|                            | Tubo Redondo Equivalente COMPRESION |                            |               |  |  |  |  |  |  |  |  |  |
|----------------------------|-------------------------------------|----------------------------|---------------|--|--|--|--|--|--|--|--|--|
| Diametro Mayor (D)<br>(in) | Espesor (t)<br>(in)                 | Diametro menor (d)<br>(in) | Area<br>(in2) |  |  |  |  |  |  |  |  |  |
| 0,5                        | 0,0350                              | 0,4650                     | 0,02653       |  |  |  |  |  |  |  |  |  |
| 0,44                       | 0,0350                              | 0,4025                     | 0,02309       |  |  |  |  |  |  |  |  |  |
| 0,625                      | 0,0490                              | 0,5760                     | 0,04622       |  |  |  |  |  |  |  |  |  |
| 0,75                       | 0,0490                              | 0,7010                     | 0,05584       |  |  |  |  |  |  |  |  |  |
| 1                          | 0,0490                              | 0,9510                     | 0,07508       |  |  |  |  |  |  |  |  |  |
| 1,125                      | 0,0490                              | 1,0760                     | 0,08470       |  |  |  |  |  |  |  |  |  |
| 1,25                       | 0,0490                              | 1,2010                     | 0,09433       |  |  |  |  |  |  |  |  |  |
| 1,5                        | 0,0490                              | 1,4510                     | 0,11357       |  |  |  |  |  |  |  |  |  |

|                                                     | <i>EJE MENOR</i><br>Strut # <i>EJE WAYOR (m)</i><br>1 1,685<br>2 1,685<br>2 0,000                                                               |             |                         | R (hr) | <i>EJE MENOR (In)</i><br>0,714<br>0,714 | 77+8CXXXESS (In)<br>0,049<br>0,049<br>0.049 | <i>LONGUITUD (In)</i><br>55,118<br>55,118<br>38 370 |      |  |  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|--------|-----------------------------------------|---------------------------------------------|-----------------------------------------------------|------|--|--|
|                                                     |                                                                                                                                                 | 4<br>5<br>6 | 2,897<br>2,360<br>2,360 | ]      | 1,143<br>1<br>1                         | 0,049<br>0,049<br>0,049                     | 54,528<br>38,024<br>38,370                          |      |  |  |
| 7 2,897 1,143 0,049 54,528   8 2,360 1 0,049 35,024 |                                                                                                                                                 |             |                         |        |                                         |                                             |                                                     |      |  |  |
| NSTITUEION:<br>IULL                                 | STITUE ION: PRESENTADO PUR:<br>ROBERTO A. NIÑO BETANICOURT<br>IULI UNIMO E CARVA NI AURITADA<br>UNIDADES: PUN FAIONS FEEDRA: OR 04 2004 REV. of |             |                         |        |                                         |                                             |                                                     | ESE: |  |  |

ANEXO E. DIMENSIONES FITTING 3, 4, 5, 6 ,7 Y 8

| Ø           |                                                          |                                                                |                                                          |                                                          |                                                         |                                                          |                                                |                                                          |                                                          |
|-------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
|             |                                                          | Ī                                                              | × Ørð                                                    | Yana                                                     | E Ørý                                                   | F (n)                                                    | W Ørg                                          | ı                                                        | A                                                        |
| t t         |                                                          | Atting3<br>Atting4<br>Atting5<br>Atting6<br>Atting7<br>Atting8 | 0,757+<br>0,5300<br>0,757+<br>0,757+<br>0,5300<br>0,757+ | 1,7323<br>1,6535<br>1,6535<br>1,7323<br>1,6535<br>1,6535 | 0,5906<br>0,2543<br>0,5118<br>0,506<br>0,2543<br>0,5118 | 0,3837<br>0,3150<br>0,3837<br>0,3150<br>0,3150<br>0,3837 | 2,7537<br>3,0507<br>2,7537<br>3,0507<br>2,7537 | 0,2756<br>0,2362<br>0,2362<br>0,2362<br>0,2362<br>0,2362 | 2,1580<br>1,9750<br>2,0587<br>2,1580<br>1,9750<br>2,0587 |
| NSTITUEION: | PRESENTADO POR                                           | REVISADO.                                                      | POR                                                      |                                                          | тала                                                    | g Mirik                                                  | SIBILES FITT                                   | W5                                                       | ESE:                                                     |
| IULL        | REBERTO A. NIÑO BETANEOURT<br>JULIAN F. CARVAJAL HURTABO | UN BIADES:                                                     | PULB                                                     | BAS                                                      | FETHA: OB                                               | -06-2006                                                 | REV.                                           | 01                                                       | HBJA Í BE Í                                              |

# ANEXO F. DIMENSIONES DEL MONTANTE


|                     |                                               | 57 C              | 55.28    |              |                 |                |
|---------------------|-----------------------------------------------|-------------------|----------|--------------|-----------------|----------------|
| OSTITUEION:<br>Juli | PRESENTADO POR:<br>Roberto A. Núño Betaneourt | REVISADO POR:     | 1044     | B IMEN SIBNI | ES BEL MONTANTE | esc:<br>1 × 40 |
| 1022                | JUCIAN F. CARVAJAL HURTADO                    | URMABES: PULBADA. | S FEETHA | 08-06-2006   | REV. OI         | HBJA 2 BE 2    |

ANEXO G. DIMENSIONES DEL FLOTADOR CATAMARÁN



| FRAME 88W<br>FRAME 1<br>FRAME 2<br>FRAME 3                 | FRAME STEP | RAME 5<br>FRAME M | FRAME  | MMA<br>RAME 6 | ; P<br>-FRAME 7       | RAME STERI<br>Z <sub>FRAME</sub> | FRAME 9       | $\mathcal{L}$                |
|------------------------------------------------------------|------------|-------------------|--------|---------------|-----------------------|----------------------------------|---------------|------------------------------|
| THIOKNESS                                                  | FRAME      | PUNTAL(in)        | MA NG/ | ۹ (in)        | B (")                 | 6°(")                            | THICKNESS(in) | Distancia desde<br>Proa (in) |
| PUNTAL                                                     | 1          | 11.8              | 12.2   | 5             | 43,1306               | 52,5354                          | 0.D8          | 4,35                         |
|                                                            | BowLoad    | 18,66             | 21.7   | 8             | 35,7943               | 44,6459                          | 0.08          | 23,34                        |
|                                                            | 2          | 19,6              | 23,0   | 9             | 34,1 375              | 43,2063                          | 0.08          | 39,5                         |
|                                                            | 3          | 20,6              | 24,5   | 5             | 33,7668               | 42,8 447                         | 0.08          | 57,68                        |
| MANISA                                                     | 4          | 21.2              | 25.3   | 6             | 33,8 986              | 42,9412                          | 0.08          | 73,62                        |
|                                                            | StepLoad   | 22                | 25,6   | 2             | 33,9594               | 42,9873                          | 0.08          | 87,82                        |
|                                                            | 5          | 22,4              | 25,5   | 7             | 33,9388               | 42,97                            | 0.08          | 103,1                        |
| A                                                          | 6000       | 23                | 25,3   | 9             | 33,8861               | 42,9276                          | 0.08          | 116,72                       |
|                                                            | MM-A       | 20,6              | 25.5   | 3             | 30,97                 | 40,1191                          | 0.08          | 116,72                       |
|                                                            | 6          | 16,6              | 24.5   | 7             | 29,8901               | 38,2 588                         | 0.08          | 126,33                       |
|                                                            | 7          | 17                | 24,0   | 7             | 26,4051               | 35,5864                          | 0.08          | 147,64                       |
|                                                            | 8          | 13,2              | 20,2   | 7             | 25,8688               | 35,1751                          | 0.08          | 178,45                       |
| 0.7(                                                       | SternLoad  | 10,8              | 16,3   | 4             | 26,4797               | 35,9765                          | 0.08          | 197,89                       |
|                                                            | 9          | 9                 | 13.1   | 4             | 26,8869               | 36,5548                          | 80.0          | 212.21                       |
|                                                            |            | •                 |        |               |                       |                                  |               |                              |
| NSTITUE ION: PRESENTADO POR:<br>ROBERTO A, NIÑO BETANEOURI | REVISADO I | P.BR.:            |        | TTUB          | B MEN                 | R ESE: 1 : 30                    |               |                              |
| IULL JULIAN F. CARVALAL HURTADO                            | UNBABES    | UNBABES: PULEABAS |        |               | FEEKA 08-06-2006 REV; |                                  |               | HELA 2 BE 6                  |

Anexo H. SOPORTES A, B, C Y D









ANEXO I.

TABLAS NORMALIZADAS DE TORNILLOS Y PASADORES

| ROSCA CON PERFIL METRICO (series seleccionadas)                                                                                                                                                                               |                                                          |                                             |                                  |                                                |                                             |                                |                                                                      |                                                          |                                              |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|----------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|--|--|--|--|
| Ferno $Fuerco$ |                                                          |                                             |                                  |                                                |                                             |                                |                                                                      |                                                          |                                              |  |  |  |  |
| Serie 1 Serie 2 Serie 3 Serie 4                                                                                                                                                                                               |                                                          |                                             |                                  |                                                |                                             |                                |                                                                      |                                                          |                                              |  |  |  |  |
| Desig-<br>na-<br>ción*                                                                                                                                                                                                        | Desig-<br>na-<br>clón                                    | Ø<br>núcleo                                 | Sección<br>núcleo                | Desig-<br>na-<br>ción                          | Ø<br>núcieo                                 | Sección<br>núcleo              | Desig-<br>na-<br>ción                                                | Ø<br>núcleo                                              | Sección<br>núcleo                            |  |  |  |  |
| M 0,3<br>M 0,4<br>M 0,5<br>M 0,6                                                                                                                                                                                              | M 18 x 2<br>M 20 x 2<br>M 22 x 2<br>M 22 x 2<br>M 24 x 2 | d ±<br>15,402<br>17,402<br>19,402<br>21,402 | 186<br>238<br>296<br>360         | M 12×1<br>M 36×2<br>M 39×2<br>M 42×2           | d k<br>10,700<br>33,402<br>36,402<br>39,402 | 90<br>876<br>1041<br>1219      | M 2 x0,25<br>M 2,3x0,25<br>M 2,6x0,35<br>M 3 x0,35                   | 1,676<br>1,976<br>2,146<br>2,546                         | 2,21<br>3,07<br>3,62<br>5,09                 |  |  |  |  |
| M 0,8<br>M 1<br>M 1,2<br>M 1,4                                                                                                                                                                                                | M 27 x 2<br>M 30 x 2<br>M 33 x 2<br>M 36 x 3             | 24,402<br>27,402<br>30,402<br>32,102        | 468<br>5°0<br>726<br>809,4       | M 45×2<br>M 48×2<br>M 52×2<br>M 55×2<br>M 56×2 | 42,402<br>45,402<br>49,402<br>53,402        | 1412<br>1619<br>1917<br>2240   | M 4 x0,5<br>M 5 x0,5<br>M 6 x0,5<br>M 8 x1                           | 3,350<br>4,350<br>,5,350<br>6,700                        | 8,81<br>14,9<br>22,5<br>35,3                 |  |  |  |  |
| M - 1,7<br>M 2 +<br>M 2,3<br>M 2,6                                                                                                                                                                                            | M 39x3<br>M 42x3<br>M 45x3<br>M 45x3<br>M 48x3           | 35,102.<br>38,102.<br>41,102<br>44,102      | 967,7<br>1140<br>1327<br>1528    | M 58×2<br>M 60×2<br>M 64×2<br>M 68×2           | 55,402<br>57,402<br>61,402<br>65,402        | 2411<br>2588<br>2961<br>3359   | M 10 x 1<br>M 12 x 1,5<br>M 14 x 1,5<br>M 16 x 1,5                   | 8,700<br>10,052<br>12,052<br>14,052                      | 59,4<br>79,4<br>114<br>155                   |  |  |  |  |
| M 3<br>M 3.5<br>M 4<br>M 5                                                                                                                                                                                                    | M 52x3<br>M 56x4<br>M 60x4<br>M 64x4                     | 48,102<br>50,804<br>54,804<br>58,804        | 1817<br>2027<br>2359<br>2716     | M 72×2<br>M 76×2<br>M 80×2<br>M 85×2           | 69,402<br>73,402<br>77,402<br>82,402        | 3783<br>4232<br>4705<br>5333   | M 18 x 1,5<br>M20 x 1,5<br>M22 x 1,5<br>M24 x 1,5                    | 16,052<br>18,052<br>20,052<br>22,052                     | 202<br>256<br>316<br>382                     |  |  |  |  |
| M 6<br>M 8<br>M 10<br>M 12                                                                                                                                                                                                    | M 68×4<br>M 72×4<br>M 76×4<br>M 76×4                     | 62,804<br>66,804<br>70,804<br>74,804        | 3098<br>3505<br>3937<br>4395     | M 90×2<br>M 95×2<br>M 100×2<br>M 105×2         | 87,402<br>92,402<br>97,402<br>102,402       | 6000<br>6706<br>7451<br>8236   | M26 x 1,5<br>M27 x 1,5<br>M28 x 1,5<br>M30 x 1,5                     | 24,052<br>25,052<br>26,052<br>28,052                     | 454<br>493<br>533<br>618                     |  |  |  |  |
| M 14<br>M 16<br>M 18<br>M 20                                                                                                                                                                                                  | M 85x4<br>M 90x4<br>M 95x4<br>M 100x4                    | 79,804<br>84,804<br>89,804<br>94,804        | 5002<br>5648<br>6334<br>7059     | M 110×2<br>M 115×2<br>M 120×2<br>M 125×2       | 107,402<br>112,402<br>117,402<br>122,402    | 9060<br>9923<br>10825<br>11767 | M32 x1,5<br>M33 x1,5<br>M35 x1,5<br>M36 x1,5                         | 30,052<br>31,052<br>33,052<br>34,052                     | 709<br>757<br>858<br>911                     |  |  |  |  |
| M 22<br>M 24<br>M 27<br>M 30                                                                                                                                                                                                  | M 105x4<br>M 110x4<br>M 115x4<br>M 120x4                 | 99,804<br>104,804<br>109,804<br>114,804     | 7823<br>8627<br>9469<br>10352    | M 130 x 3<br>M 140 x 3<br>hosto<br>M 300 x 3   | 126,102<br>136,102<br>296,102               | 12489<br>14549<br>68861        | M38 x1,5<br>M39 x1,5<br>M40 x1,5<br>M42 x1,5                         | 36,052<br>37,052<br>38,052<br>40,052                     | 1021<br>1078<br>1137<br>1260                 |  |  |  |  |
| M 33<br>M 36<br>M 39<br>M 42<br>M 45<br>M 48                                                                                                                                                                                  | M 125×4<br>M 130×6<br>M 140×6<br>haste<br>M 300×6        | 119,804<br>122,206<br>132,206<br>292,206    | 11273<br>11729<br>13728<br>67061 |                                                |                                             |                                | M45 x1,5<br>M48 x1,5<br>M50 x1,5<br>M52 x1,5<br>M55 x1,5<br>M58 x1,5 | 43,052<br>46,052<br>48,052<br>50,052<br>53,052<br>56,052 | 1456<br>1666<br>1813<br>1968<br>2211<br>2468 |  |  |  |  |
| Hoja d                                                                                                                                                                                                                        | le normas: DIN<br>150, diámetro n                        | 13, h 12.<br>úcleo y se                     | Sustitutiv<br>cción núc          | ieo de pág. 6                                  | (rosca mé<br>7 en DIN                       | trica fina<br>13 h.1           | s)                                                                   |                                                          |                                              |  |  |  |  |

| Г                 | ROSCA WHITWORTH                                                                                      |                                      |                                      |                                            |                                                                  |                              |                      |                        |                          |                                  |                                       |                      |  |  |
|-------------------|------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------|------------------------------------------------------------------|------------------------------|----------------------|------------------------|--------------------------|----------------------------------|---------------------------------------|----------------------|--|--|
| Г                 | Perno Tuerco Tuerco                                                                                  |                                      |                                      |                                            |                                                                  |                              |                      |                        |                          |                                  |                                       |                      |  |  |
|                   |                                                                                                      |                                      |                                      |                                            |                                                                  |                              |                      |                        |                          |                                  |                                       |                      |  |  |
|                   | h = poso t=0,96 h r=0,137 h Perno                                                                    |                                      |                                      |                                            |                                                                  |                              |                      |                        |                          |                                  |                                       |                      |  |  |
| F                 |                                                                                                      |                                      | Pe                                   | rno y Tuerci                               | a                                                                |                              |                      |                        | Tuerca                   |                                  | Aran                                  | dela                 |  |  |
|                   | Momi-<br>nal                                                                                         | Ørosca                               |                                      | Sección<br>núcleo                          | N° file-<br>tes en<br>1''                                        | Paso                         | Altura<br>cabeza     | Altura<br>(0,8 - d)    | caras                    | medida<br>entre<br>aristas       | Ø<br>exte-<br>rior                    | espesor<br>L         |  |  |
| F                 | pulg.                                                                                                | mm                                   | mm                                   | cm <sup>3</sup>                            | z                                                                | h                            | k                    | m                      | S¶∕                      | e                                | d.                                    | 5                    |  |  |
| のないないない           | 1/4,<br>3/16<br>3/8,<br>3/2                                                                          | 6,35<br>7,94<br>9,53<br>12,70        | 4,72<br>6,13<br>7,49<br>9,99         | 0,175<br>0,295<br>0,441<br>0,784           | 20<br>18<br>16<br>12                                             | 1,27<br>1,41<br>1,59<br>2,12 | 5<br>6<br>7<br>9     | 5,5<br>6,5<br>8<br>11  | 11<br>14<br>17<br>22     | 12,7<br>16,2<br>19,6<br>25,4     | 14<br>18<br>22<br>28                  | 1,5<br>2<br>2,5<br>3 |  |  |
| 1 areas a         | 5/8<br>3/4                                                                                           | 15,88<br>19,05<br>22,23<br>25,40     | 12,92<br>15,80<br>18,61<br>21,34     | 1,311<br>1,960<br>2,720<br>3,575           | 11<br>10<br>9<br>8                                               | 2,31<br>2,54<br>2,82<br>3,18 | 11<br>13<br>16<br>18 | 13<br>16<br>18<br>20   | 27<br>32<br>36<br>41     | 31,2<br>36,9<br>41,6<br>47,3     | 34<br>40<br>45<br>52                  | 3<br>4<br>5          |  |  |
| a fast a straight | 11/8°2<br>11/4°<br>13/6<br>11/2                                                                      | 28,58<br>31,75<br>34,93<br>38,10     | · 23,93<br>27,10<br>29,51<br>32,68   | 4,497<br>5,770<br>6,837<br>8,388           | 7<br>7<br>6<br>6                                                 | 3,63<br>3,63<br>4,23<br>4,23 | 20<br>22<br>24<br>27 | 22<br>25<br>28<br>30   | 46<br>50<br>55<br>60     | 53,1<br>57,7<br>63,5<br>69,3     | 58<br>62<br>68<br>75                  | 5<br>5<br>6          |  |  |
| A MARTINE         | 1 <sup>5</sup> /8<br>1 <sup>3</sup> /4<br>2<br>2 <sup>1</sup> / <sub>2</sub>                         | 41,28<br>44,45<br>50,80<br>57,15     | 34,77<br>37,95<br>43,57<br>49,02     | 9,495<br>11,310<br>14,912<br>18,873        | 5<br>5<br>4 <sup>1</sup> /2<br>4                                 | 5,08<br>5,08<br>5,65<br>6,35 | 30<br>32<br>36<br>40 | 32<br>35<br>40<br>45   | 65<br>70<br>80<br>85     | 75,0<br>80,8<br>92,4<br>98,2     | 80<br>85<br>98<br>105                 | 7<br>7<br>8<br>9     |  |  |
| ないないのない           | 2 <sup>1</sup> /2<br>2 <sup>3</sup> /4<br>3<br>3 <sup>1</sup> /4                                     | 63,50<br>69,85<br>76,20<br>82,55     | 55,37<br>60,56<br>66,91<br>72,54     | 24,079<br>28,804<br>35,161<br>41,333       | 4<br>3 <sup>1</sup> /2<br>3 <sup>1</sup> /2<br>3 <sup>1</sup> /4 | 6,35<br>7,26<br>7,26<br>7,82 | 45<br>50<br>54<br>58 | 50<br>55<br>60<br>65   | 95<br>105<br>110<br>120  | 109,7<br>121,3<br>127,1<br>138,6 | 120 <sup>-</sup><br>130<br>135<br>150 | 5<br>10<br>10<br>12  |  |  |
| 201-20030         | 31/2<br>33/4<br>4<br>4 <sup>1</sup> /4                                                               | 88,90<br>95,25<br>101,60<br>107,95   | 78,89<br>84,41<br>90,76<br>96,64     | 48,885<br>55,959<br>64,697<br>73,349       | 3 <sup>1</sup> /4<br>3<br>3<br>2 <sup>7</sup> /8                 | 7,82<br>8,47<br>8,47<br>8,84 | 62<br>67<br>70<br>75 | 70<br>75<br>80<br>85   | 130<br>135<br>145<br>155 | 150,2<br>155,9<br>167,5<br>179,0 | 160<br>165<br>180<br>190              | 12<br>12<br>14<br>14 |  |  |
| 1.54641110        | 4 <sup>1</sup> / <sub>2</sub><br>4 <sup>3</sup> / <sub>4</sub><br>5<br>5 <sup>1</sup> / <sub>4</sub> | 114,30<br>120,66<br>127,01<br>133,36 | 102,99<br>108,83<br>115,18<br>120,96 | 83,307<br>93,014<br>104,185<br>114,922     | 27/8<br>23/4<br>23/4<br>25/8                                     | 8,84<br>9,24<br>9,24<br>9,68 | 80<br>84<br>90<br>94 | 90<br>95<br>100<br>105 | 165<br>175<br>180<br>190 | 190,5<br>202,1<br>207,9<br>219,5 | 205<br>215<br>220<br>230              | 14<br>16<br>16<br>16 |  |  |
| 1                 | 5 <sup>1</sup> /2 *<br>5 <sup>3</sup> /4<br>6                                                        | 139,71<br>146,06<br>152,41           | 127,31<br>133,04<br>139,39           | 127,304<br>139,022<br>152,608              | 2 <sup>5</sup> /8<br>2 <sup>1</sup> /2<br>2 <sup>1</sup> /2      | 9,68<br>10,16<br>10,16       | 98<br>102<br>106     | 110<br>115<br>120      | 200<br>210<br>220        | 231,0<br>242,6<br>254,1          | 245<br>255<br>270                     | 18<br>18<br>18.      |  |  |
| 10.00             | Hojas<br>Designa                                                                                     | de normas:<br>ación de u             | rosca Whi<br>mente, An<br>na rosca W | itworth DIN<br>randelas DI<br>'hitworth de | N 125<br>Ø 1/2":                                                 | xas y tue<br>1/2"            | rcos her             | la ganales             | DIN 9                    | 31,3, y                          | 934, res                              | pectiva -            |  |  |

| 2017<br>2010 |                                                                                                                                                                                 | ×       |           |                |          | Pasa             | dores cónicos                                                                                                                                        |                       |                   |        |                   |             |          | DIN 1<br>(Jun. 56) |           |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|----------------|----------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|--------|-------------------|-------------|----------|--------------------|-----------|--|
|              | all                                                                                                                                                                             |         | Dinicidad | 7<br>1 1:50    |          | }-               | Material: St 50 k ó bien 9 S 20 K<br>La medida nominal d se refiere al extremo d<br>gado, del pasador<br>Designoción p. ej.: Pas.cónico 4 × 40 DIN 1 |                       |                   |        |                   |             |          |                    | •         |  |
| Øď           | 0,6                                                                                                                                                                             | 0,8     | 2         | 1,5            | 2.       | 3                | 4                                                                                                                                                    | 5                     | 6                 | 8      | - 10              | 12          | 14       | 16                 | 20        |  |
| ,            | 4                                                                                                                                                                               | 6       | 8         | 10             | 12,      | 14               | 16                                                                                                                                                   | 20                    | 24                | 28     | 32                | 36          | 36,      | 40                 | 50        |  |
| •            | 10                                                                                                                                                                              | 14      | 18        | 26             | 36       | 50               | 60                                                                                                                                                   | 70                    | 100               | 120    | 140               | 165         | 165      | 230                | 230       |  |
| Longs        | Longs. normalizadas: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 36, 40, 45, 50, 55,<br>60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 165, 180, 200, 230, 260      |         |           |                |          |                  |                                                                                                                                                      |                       |                   |        |                   |             |          |                    |           |  |
| •            |                                                                                                                                                                                 |         |           | ,              | - 1      | Pasad            | dores cilíndricos                                                                                                                                    |                       |                   |        |                   |             | 60       | DIN<br>(Jun        | 17<br>.56 |  |
|              | es un j                                                                                                                                                                         | pasador | de aju    | Design:<br>ste | ación de | e un pa:<br>es u | sador ci<br>In pasa                                                                                                                                  | ilíndrica<br>dor de i | o de 4 r<br>union | ™Ø<br> | cuando<br>es      | :<br>un pas | sador de | a remac            | he        |  |
|              |                                                                                                                                                                                 |         |           |                |          |                  |                                                                                                                                                      |                       |                   | 04     |                   | Z           | l        |                    | -Idhn -   |  |
| Pas.         | cilindri                                                                                                                                                                        | co 4 m  | 6 x 20    | DIN 7          | ·        | 4                | h 8 x 3                                                                                                                                              | 20 DIN                | 7                 |        | 4 h 11 x 20 DIN 7 |             |          |                    |           |  |
| ød           | 0,8                                                                                                                                                                             | 1       | 1,5       | 2              | 2,5      | 3                | 4                                                                                                                                                    | 5                     | 6                 | - 8    | 10                | . 12        | 14       | 16                 | . 20      |  |
| ı            | 2                                                                                                                                                                               | 3       | 3         | 4              | 4        | 4                | 5                                                                                                                                                    | 5                     | <i>'</i> 6        | 8      | 10                | 10          | 14       | 16                 | 20        |  |
|              | 8                                                                                                                                                                               | 12      | 16        | 20             | 24       | 32               | 40                                                                                                                                                   | 50                    | 60                | 80     | 100               | 120         | 160      | 180                | 200       |  |
| Long         | Longs.normalizadas: 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36, 40, 45, 50, 55, 60,<br>70, 80, 90, 100, 120, 140, 160, 180, 200 (Material: St 50 Kobien 9 5 20 K) |         |           |                |          |                  |                                                                                                                                                      |                       |                   |        |                   |             |          |                    |           |  |