OPTIMIZACION DE ANTENA DE ANCHO DE BANDA ULTRA AMPLIO (UWB) TIPO CONICA CON CORRUGACIONES

LOS LIBERTADORES Fundación Universitaria

Fundación Universitaria Los Libertadores

Facultad de Ingeniería y Ciencias Básicas Programa de Ingeniería Electrónica Bogotá D.C, Colombia

2022

Página dejada en blanco intencionalmente.

OPTIMIZACION DE ANTENA DE ANCHO DE BANDA ULTRA AMPLIO (UWB) TIPO CONICA CON CORRUGACIONES

Presentado por Edwin Monroy LOS LLUIS Patalagua DORES

FUNDACIÓN UNIVERSITARIA título de

Ingeniero Electrónico

Dirigida por PhD. Omar Nova

Presentada a Programa de Ingeniería Electrónica Fundación Universitaria Los Libertadores Bogotá D.C, Colombia.

2022

Página dejada en blanco intencionalmente.

Notas de aceptación

LOS LIBERTADORES FUNDACIÓN UNIVERSITARIA

Firma del presidente del jurado

Firma del jurado

Firma del jurado

Bogotá DC, Noviembre de 2022.

Página dejada en blanco intencionalmente.

LOS LIBERTADORES FUNDACIÓN UNIVERSITARIA

Las directivas de la Fundación Universitaria Los Libertadores, los jurados calificadores y el cuerpo docente no son responsables por los criterios e ideas expuestas en el presente documento. Estos corresponden únicamente a los autores y a los resultados de su trabajo.

Página dejada en blanco intencionalmente.

Dedicatoria

A nuestras familias que nos brindaron su apoyo y momentos de alegría.

A nuestros compañeros de profesión que nos acompañaron en esta etapa de la vida.

Agradecimientos

Al Doctor Omar Nova por su valiosa ayuda y asesoramiento en el desarrollo del proyecto.

LOS LIBERTADORES Fundación Universitaria

INDICE

Resum	nen	17
Capítu	lo 1 Introducción	19
Capítu	lo 2 Objetivos y Justificación	
2.1 (Objetivos	21
	2.1.1 Objetivo General	21
	2.1.2 Objetivos Específicos	21
	Justificación	
Capítu	lo 3 Marco Teorico	24
3.1 A	NTENA TIPO PARCHE	24
	3.1.1 CARACTERISTICAS	25
	3.1.2 ALIMENTACION DE LA ANTENA	
	3.1.3 RADIACION DE LA ANTENA	27
	3.1.4 PATRON DE RADIACION EN EL PLANO E	
	3.1.5 PATRON DE RADIACION EN EL PLANO H	
3.2 H	PROPIEDADES DE ANTENA TIPO PARCHE	
	3.2.1 Directividad:	
	3.2.2Ganancia:	
	3.2.3Ancho de banda	
Capítu	ılo 4 Metodolog´a aplicada	
4.1 I	DISEÑO DE ANTENA TIPO PARCHE	
4.2 I	DISEÑO DE ANTENA TIPO CORRUGACION CÓNICA	
4.3 I	DISEÑO DE ANTENA TIPO CORRUGACION CÓNICA	
4.4 I	DISEÑOS Y VARIACIONES DE ANTENA TIPO CORRUGACION CÓNICA	41
Capítu	lo 5 Análisis y Resultados	43
5.1	ANCHO DE BANDA ANTENA TIPO CÓNICA	
	5.1.1 Parámetro S ₁₁	
	5.1.2 Patrón de radiación en plano E antena tipo cónica	
	5.1.3 Patrón de radiación en el plano H tipo cónica	
	5.1.4 Patrón de radiación electromagnético 3D	
5.2 A	ANCHO DE BANDA ANTENA TIPO CÓNICA CON CORRUGACIONES	
	5.2.1 Parámetro S11	
	5.2.2 PATRON DE RADIACION EN EL PLANO E	
	5.2.3 PATRON DE RADIACION EN EL PLANO H	51
	5.2.3 PATRON DE RADIACION EN 3D	
Capítul	o 6 Conclusiones y Recomendaciones	

Bi	bliografía	56
	RECOMENDACIONES	.55
	CONCLUSIONES	54

Indice de figuras

Fig.3.1 Antena de Parche en Tecnología Micr	ostrip24
Fig.3.2. Dimensiones para antena tipo parch	e26
Fig(3.3) Alimentacion por línea de transmisi Alimentacion por coaxial	ón Fig(3.4) 27
Fig(3.5) Campo Electrico	Fig(3.6) Campo Magnetico28
Fig(3.7) Patrón de radiación tridimensional.	29
Fig(4.1) ejemplo 14.1 del texto de Balanis	32
Fig(4.2) ejemplo 14.2 del texto de Balanis	33
Fig(4.3) ejercicios ej 14.1 y ej 14.2 en Matlab	34
Fig(4.4) Resultados ej 14.1 y 14.2 en Matlab	34
Fig(4.5) Propiedades de diseño	35
Fig (4.6) Componentes de la antena tipo parche	e35
Fig(4.7) diseño de diseño	
Fig(4.8) ejercicios ej 14.1 y ej 14.2 en Matlab	
Fig(4.9) Antena tipo parche F parche	ig(4.9) Dimensiones de antena 38
Fig(4.10) Antena tipo parche conica Fig tipo conica	g(4.10) Dimensiones de antena 38
Fig(4.11) Sustracción de exponencial	
Fig(4.12) Dimensión de antena cónica con corr	rugaciones 40
Fig(4.13)Diseño de antena cónica con corruga	ciones 40

Abreviaturas

- F0 Promedio Geométrico de la Frecuencia
- F1 Frecuencia Inicial
- F2 Frecuencia Final
- **FBW** Fractional Bandwidth (Ancho de Banda Fraccional)

Amp Amplitud

Tasa Constante de la exponencial

W Ancho del sustrato

L Largo del sustrato

Ws Ancho del parche

Wr Ancho de la corrugacion

H_Subst Altura del sustrato

H_Cobre Altura del parche

W1 Ancho de microcinta

L1 Largo de la microcinta

W_Port Ancho del puerto

H_Port Alto del puerto

Lr Largo de las corrugaciones

Ls largo del parche

Lg Largo de puerto y microcinta Antena MS Antena en microcinta (microstrip) Plano H Campo Magnético

Plano E Campo eléctrico

OPTIMIZACION DE ANTENA DE ANCHO DE BANDA ULTRA AMPLIO (UWB) TIPO CORRUGACION

Resumen

La finalidad de presente proyecto radica en; diseñar, calcular, simular y validar funcionamiento de una antena UWB (Ultra-Wide Band) tipo corrugación optimizando las frecuencias operación mediante la variación de la geometría para un mejor desempeño en el ancho de banda. El diseño propuesto de las antenas tipo rectangular y cono mediante el método utilizado de formas rectangulares de orden exponencial y plano de tierra para diseñar una antena omnidireccional de tamaño compacto con una serie de inserciones o elementos tipo corrugación establecidas directamente en el parche, hacen que la distribución del campo magnético inducido sea más eficiente permitiendo que obtengamos una cobertura en frecuencias mayor. Los resultados simulados y medidos demuestran que usando este método el ancho de banda mejora en un 3.23% sobre el porcentaje de mejora ya logrado en la antena tipo cónica.

Palabras claves: Frecuencia, ancho de banda, tasa, amplitud, corrugación, sustrato.

Página dejada en blanco intencionalmente.

Capítulo 1 Introducción

En las más de seis décadas desde el desarrollo de la microelectrónica, el crecimiento tecnológico que ha experimentado las distintas ramas de la electrónica, en particular los sistemas de comunicación inalámbricos ha sido significativo en específico el desarrollo de antenas en microcinta MS (*microstrip*) por sus siglas en inglés, las cuales se usan en numerosos dispositivos electrónicos como lo son celulares, routers, módems, tarjetas bancarias con chips que han facilitado las transacciones monetarias haciendo mucho más dinámico y fácil los pagos entre establecimientos y usuarios. Los avances en esta área han logrado diseños de antenas MS de muy buen desempeño en términos de eficiencia permitiendo que los dispositivos sean de dimensiones adecuadas, reduciendo su tamaño lo cual implica intrínsicamente una menor medida del tamaño de un producto final determinado. El tipo de antena en microcinta más común es el conocido como antena tipo parche (patch antenna). Una antena de parche es una antena de banda estrecha y ancho haz fabricadas grabando el patrón del elemento de la antena en trazas de metal unidas a un sustrato dieléctrico aislante, como una placa de circuito impreso PCB (printed circuit board), con una capa de metal unida al lado opuesto del sustrato que forma un plano de tierra. Las formas de antena de microcinta comunes son cuadradas, rectangulares, circulares y elípticas, pero es posible cualquier forma continua. Algunas antenas de parche no usan un sustrato dieléctrico y, en cambio, están hechas de un parche de metal montado sobre un plano de tierra usando espaciadores dieléctricos; la estructura resultante es menos resistente, pero tiene un ancho de banda más amplio. Debido a que tales antenas tienen un perfil muy bajo, son mecánicamente resistentes y pueden moldearse para adaptarse a la piel curva de un vehículo, a menudo se montan en el exterior de aeronaves y naves espaciales, o se incorporan a dispositivos móviles de comunicación por radio.

El proyecto titulado optimización de antena de ancho de banda ultra amplio (UWB) tipo corrugación tiene como propósito presentar alternativas que permitan el mejoramiento del ancho de banda mediante el diseño de antena elíptica con inserciones o corrugaciones que aportan una ganancia significativa al rango de frecuencias de operación.

Capítulo 2 Objetivos y Justificación

2.1 Objetivos

2.1.1 Objetivo General

Diseñar una antena ranura cónica de amplio ancho de banda (ultra wideband, UWB) con corrugaciones, que opere en un rango de frecuencias comprendido entre 1 GHz y 3 GHz, mediante el ajuste de su geometría.

2.1.2 Objetivos Específicos

- Definir la geometría óptima de la antena para asegurar un ancho de banda fraccional (fractional bandwidth, FBW) máximo.
- Ajustar las dimensiones y el número de las corrugaciones adicionadas a la antena ranura cónica para obtener un mayor ancho de banda con respecto a la antena sin corrugaciones.
- Aumentar el ancho de banda fraccional, mediante la introducción de corrugaciones, en un rango comprendido entre 2 y 4 puntos porcentuales por encima del valor obtenido con la antena sin corrugaciones.

Justificación

Existen varios diseños de antenas tipo parche que se pueden utilizar para dispositivos electrónicos para su comunicación de forma inalámbrica, tales como antenas de forma cuadrada, rectangulares, entre otras. En esta tesis se emplean antenas de microcinta con forma elíptica, debido a su versatilidad, buen desempeño, bajo costo, ligereza, tamaño reducido de superficie plana. La antena será diseñada para que opere a una frecuencia central de 3GHz debido a que:

- La longitud de onda de la señal a esta frecuencia experimenta una mayor cantidad de reflexiones en los obstáculos a comparación de las señales de mayor frecuencia como las de 3 a 4GHz, provocando trayectorias múltiples, y logrando una cobertura mayor entre transmisor y receptor.
- 2. Las pérdidas por dieléctrico del substrato FR-4 aumentan rápidamente con frecuencias de operación mayores, por lo que reduciría la ganancia de la antena.
- Se decidió utilizar frecuencias más bajas como las cercanas a 2.5GHz debido a su gran demanda y su compatibilidad con dispositivos como; teléfonos inalámbricos a 2.4GHz, WiFi, Bluetooth, hornos de microondas a 2.45GHz, entre otros
- 4. Si se utilizan frecuencias bajas, es más difícil obtener gran ancho de banda, ya que éste, es primordial para dar soporte a una mayor cantidad de usuarios en un mercado tan creciente.

Capítulo 3 Marco Teorico

3.1 ANTENA TIPO PARCHE

Las antenas tipo parche están basadas en la tecnología microstrip que es un tipo de línea de transmisión utilizando una placa de circuito impreso y se utiliza para transmitir señales de microondas, En aplicaciones de aeronaves, naves espaciales, satélites y misiles de alto rendimiento, donde el tamaño, el peso, el costo, el rendimiento, la facilidad de instalación y el perfil aerodinámico son limitaciones, es posible que se requieran antenas de bajo perfil. Actualmente existen muchas otras aplicaciones gubernamentales y comerciales, tales como radio móvil y comunicaciones inalámbricas, que tienen especificaciones similares. Para cumplir con estos requisitos, se pueden utilizar antenas microstrip El apilamiento, así como otros métodos, de elementos microstrip también se puede utilizar para aumentar el ancho de banda, Además, las antenas microstrip también exhiben grandes firmas electromagnéticas en frecuencias fuera de la banda operativa, son bastante grandes físicamente en VHF y posiblemente en frecuencias UHF, y en arreglos grandes existe una compensación entre el ancho de banda y el volumen de exploración.

La siguiente figura es un ejemplo de antena de parche:

Fig.3.1 Antena de Parche en Tecnología Microstrip

3.1.1 CARACTERISTICAS

Las antenas tipo parche como ya sea mencionado antes son un tipo de línea de transmisión utilizadas para desarollar circuitos de alta frecuencia que consiste en una franja de conducción separada de la franja de masa por una capa de sustrato dieléctrico. Componentes de microondas, tales como antenas, acopladores, filtros, divisores, etc. pueden formarse a partir de microstrip, haciendo dicho componente como una metalización sobre el sustrato. El microstrip hasta ahora es más barato que la tecnología tradicional de guía de onda, además de ser mucho más ligero y compacto.

Estas antenas trabajan sobre el rango de las microondas sobre la banda de los Gigaherts, Las principales desventajas operativas de las antenas microstrip son su baja eficiencia, baja potencia, alta q (a veces superior a 100), pureza de polarización deficiente, rendimiento de escaneo deficiente, radiación de alimentación espuria y ancho de banda de frecuencia muy estrecho, que normalmente es solo una fracción de un porcentaje o, como máximo, un pequeño porcentaje. En algunas aplicaciones, como en los sistemas de seguridad gubernamentales, son deseables anchos de banda estrechos. Sin embargo, existen métodos, como el aumento de la altura del sustrato, que se pueden utilizar para ampliar la eficiencia (hasta un 90 % si no se incluyen las ondas superficiales) y el ancho de banda (hasta un 35 % aproximadamente).

Para el diseño de una antena tipo parche se tiene en cuenta que se va a desarrollar en un espacio euclideo que es también llamado trimencional donde se contempla cada punto en forma de vector (X,Y,Z) ya que la antena tipo parche cuenta con 3 longitudes en dicho espacio W como el ancho, L largo y h a la altura fig(3.2).

Fig.3.2. Dimensiones para antena tipo parche

Existen numerosos sustratos que se pueden utilizar para el diseño de antenas microstrip, y sus constantes dieléctricas suelen estar en el rango de $2.2 \le cr \le 12$. Los que son más deseables para un buen rendimiento de la antena son los sustratos gruesos cuya constante dieléctrica se encuentra en el extremo inferior del rango porque brindan una mejor eficiencia, mayor ancho de banda, campos débilmente ligados para la radiación en el espacio, pero a expensas de elementos más grandes. tamaño Los sustratos delgados con constantes dieléctricas más altas son deseables para los circuitos de microondas porque requieren campos estrechamente unidos para minimizar la radiación y el acoplamiento no deseados, y conducen a tamaños de elementos más pequeños; sin embargo, debido a sus mayores pérdidas, son menos eficientes y tienen anchos de banda relativamente más pequeños. [1]

3.1.2 ALIMENTACION DE LA ANTENA

Es uno de los aspectos más importantes a tener en cuenta puesto que si no se define una buena estructura de alimentación para el diseño de la antena su eficiencia será afectada y no tendrá un buen funcionamiento. Existen diferentes métodos para alimentar una antena de forma que radie lo más eficientemente posible en las frecuencias deseadas mediante un correcto acoplamiento de impedancias. A pesar de existir muchos métodos para alimentar una antena, éstos se pueden condensar en 3 categorías principales: alimentación directa, alimentación por proximidad y alimentación por apertura [1]

1. Alimentación directa

Este tipo de alimentación requiere de un contacto directo entre la estructura de alimentación y la antena radiante. Los dos principales métodos de alimentación en esta categoría son: alimentación por línea de transmisión (línea microstrip) y alimentación por conector coaxial.

- Alimentación por línea de transmisión:

El alimentador de línea microstrip es fácil de fabricar, simple de igualar controlando la posición de inserción y bastante simple de modelar. Sin embargo, a medida que aumenta el grosor del sustrato, aumentan las ondas superficiales y la radiación de alimentación espuria, que para los diseños prácticos limitan el ancho de banda (típicamente del 2 al 5%). [1]

Este método consiste en alimentar al parche rectangular conectándole directamente la línea de transmisión (diseñada para tener la impedancia característica deseada). Existen dos formas del método por línea de transmisión, conectando la línea de transmisión

directamente en un borde del parche y conectando la línea de transmisión en un borde con inserciones en el parche. El acoplamiento de impedancia se puede modificar en las dos formas de alimentación con microstrip, en el caso de la conexión directa variando la posición al borde del parche generará un mayor o mejor acoplamiento de impedancia y en el caso de la alimentación con línea de transmisión por medio de inserciones, la profundidad de la inserción establece según lo deseado el acoplamiento de impedancia. Fig(3.3)

-Alimentación por conector coaxial

Este método consiste en hacer que el conductor central del cable coaxial del cable coaxial haga contacto directamente al parche rectangular, mientras que la parte el conductor exterior de éste se conecte al plano de tierra de la antena microstrip, esta conexión directa se realiza por la parte inferior de la antena, es decir, en el plano de tierra. El acoplamiento de impedancia depende de la posición de la sonda coaxial en relación con el parche de tal forma que colocándola correctamente generará un mejor acoplamiento. Fig(3.4)

En la siguiente figura se puede ver un ejemplo sacado de la referencia [1]

Fig(3.3) Alimentacion por línea de transmisión

Fig(3.4) Alimentacion por coaxial

3.1.3 RADIACION DE LA ANTENA

El patrón de radiación de una antena de parche es omnidireccional, aunque la potencia radiada es emitida solamente hacia la parte superior de la antena en su forma ideal debido a que se considera un plano de tierra infinito, el cual bloquea radiación hacia la parte inferior de la antena. En la realidad puede existir una radiación hacia la parte inferior de la antena debido a que el plano de tierra es de dimensiones finitas, sin embargo, los lóbulos posteriores son de pequeñas dimensiones en comparación con el lóbulo principal por lo que pueden despreciarse.

Los parámetros más importantes del diagrama de radiación son los siguientes:

- Dirección de apuntamiento: Es la dirección de máxima radiación.

- Lóbulo principal: Es el margen angular en torno a la dirección de máxima radiación. De la dirección de máximo apuntamiento.

- Lóbulos secundarios: Son los dos máximos relativos que rodean al principal y que tienen una amplitud menor.

- Anchura de haz a -3 dB: Es la separación angular de direcciones en las que el diagrama de radiación de un haz toma el valor de la mitad del máximo. Es muy útil para determinar visualmente la directividad de una antena

- Relación de lóbulo principal a secundario (SLL): Es el cociente en dB entre el valor máximo del lóbulo principal y el valor máximo del lóbulo secundario.

El patrón de radiación de una antena se puede definir como la representación espacial de la energía que es radiada por una antena. Esta representación generalmente se hace en el campo lejano (más adelante se hablará de los campos de radiación de una 18 antena) y puede llevarse a cabo en dos o tres dimensiones. Cuando se habla de un patrón de radiación en tres dimensiones existen dos planos sobre los cuales se grafican los puntos correspondientes a la energía radiada de la antena: el plano Azimutal y el plano de elevación. El plano Azimutal es aquel que está en función del ángulo φ (f(φ)) y puede verse como un plano horizontal, mientras que el plano de elevación es aquel que está en función del ángulo θ (g(θ)) y puede verse como un ángulo vertical (fig 3.7). En dicha figura se pueden apreciar también las dimensiones para considerar el patrón de radiación de una antena (coordenadas esféricas): el radio donde se mide la radiación (r), el diferencial del plano azimutal (d φ), el diferencial del plano de elevación (d θ), el diferencial de área esférica (dA) así como los vectores unitarios de las coordenadas esféricas (âr, â φ y â θ). [1].

Fig(3.7) Patrón de radiación tridimensional

3.1.4 PATRON DE RADIACION EN EL PLANO E

Para una antena polarizada linealmente, este es el plano que contiene el vector de campo eléctrico (a veces llamado apertura E) y la dirección de máxima radiación. El campo eléctrico o plano "E" determina la polarización u orientación de la onda de radio. Para una antena con polarización vertical, el plano E suele coincidir con el plano vertical / de elevación. Para una antena polarizada horizontalmente, el plano E generalmente coincide con el plano horizontal / azimutal. El plano E y el plano H deben estar separados por 90 grados.

Cuando los campos de igual magnitud y fase en dos corrugaciones separadas por una distancia L, se puede explicar con el factor de arsenal para los dos elementos, propuesto en la literatura [1].

$$E_{\phi}^{t} = +j \frac{k_{0}hWE_{0}e^{-jk_{0}r}}{\pi r} \left\{ \sin\theta \frac{\sin(X)}{X} \frac{\sin(Z)}{Z} \right\} * \cos\left(\frac{k_{0}L_{e}}{2}\sin\theta\sin\phi\right) \qquad EC.1$$

Donde:

$$X = \frac{k_0 h}{2} \sin \theta \cos \phi \qquad EC.2$$

$$Z = \frac{\kappa_0 w}{2\pi} \cos \theta \qquad EC.3$$

$$k_0 = \frac{2\Pi}{\lambda} \qquad \qquad EC.4$$

Para valores muy pequeños de h ($k_0 h \ll 1$)la expresión se reduce a:

$$E_{\phi}^{t} \approx +j \frac{2V_{0}e^{-jk_{0}r}}{\pi r} \left\{ \sin\theta \frac{\sin\left(\frac{k_{0}W}{2}\cos\theta\right)}{\cos\theta} \right\} * \cos\left(\frac{k_{0}L_{e}}{2}\sin\theta\sin\phi\right) \qquad EC.5$$

El plano E principal para la antena microstrip, el plano x-y ($\theta = 90^\circ$, $0^\circ \le \Phi \le 90^\circ$ y $270^\circ \le \Phi \le 360^\circ$), para los campos irradiados las expresiones de la ecuaciones (3.7), (3.8) y (4.0) se reducen a:

$$E_{\phi}^{t} \approx +j \frac{k_{0}WV_{0}e^{-jk_{0}r}}{\pi r} \left\{ \frac{\sin\left(\frac{k_{0}W}{2}\cos\phi\right)}{\frac{k_{0}h}{2}\cos\phi} \right\} * \cos\left(\frac{k_{0}L_{e}}{2}\sin\theta\sin\phi\right) \qquad EC.6$$

Normalizando la ecuación:

$$E_{\phi}^{t} \approx \left\{ \frac{\sin\left(\frac{k_{0}W}{2}\cos\phi\right)}{\frac{k_{0}h}{2}\cos\phi} \right\} * \cos\left(\frac{k_{0}L_{e}}{2}\sin\theta\sin\phi\right) \qquad EC.7$$

3.1.5 PATRON DE RADIACION EN EL PLANO H

En el caso de la misma antena polarizada linealmente, este es el plano que contiene el vector de campo magnético (a veces llamado apertura H) y la dirección de máxima radiación. El campo de magnetización o plano "H" se encuentra en ángulo recto con el plano "E". Para una antena con polarización vertical, el plano H suele coincidir con el plano horizontal / azimutal . Para una antena con polarización horizontal, el plano H suele coincidir con el plano vertical / de elevación.

El plano H es el ortogonal al anterior, YZ, y el diagrama es el debido a la corriente magnética uniforme de longitud W.

Una vez obtenido el campo eléctrico deducimos el campo magnético mediante la ecuación (Ec.7), obteniéndose

$$H = \frac{jI_m}{2\pi r} e^{-jk_0 r} \frac{\cos\left(\frac{k_0 l}{2}\cos\theta\right) - \cos\left(\frac{k_0 l}{2}\right)}{\sin\theta} \qquad Ec.8$$

3.2 PROPIEDADES DE ANTENA TIPO PARCHE

El parche rectangular es, con mucho, la configuración más utilizada. Es muy fácil de analizar utilizando tanto el modelo de línea de transmisión como el de cavidad, que son más precisos para sustratos delgados [2]. Comenzamos con el modelo de línea de transmisión porque es más fácil de ilustra.

3.2.1 Directividad:

La directividad constituye probablemente el parámetro de mayor importancia a la hora de juzgar el patrón de radiación de una antena. La directividad se define como "la razón de la intensidad radiada en una dirección a la intensidad de radiación promedio en 24 todas las direcciones" [1]. En otras palabras la directividad se puede considerar como la razón de la intensidad radiada en una dirección a la intensidad de una antena con patrón isotrópico. Entre más alta sea la directividad, el haz de radiación será más afilado. La directividad entonces está dada por:

$$D = \frac{U}{U_0} = \frac{4\pi U}{P_{rad}}$$

3.2.2Ganancia:

Las antenas son elementos pasivos y por lo tanto no pueden realizar una amplificación, es por ello que el término "ganancia" cuando se habla de antenas varía de su definición convencional utilizada para circuitos electrónicos. La ganancia es un parámetro de las antenas similar a la directividad. La diferencia reside en que la directivitad solamente toma en cuenta las propiedades direccionales de la antena y por lo tanto ésta depende únicamente del patrón de radiación. Por el contrario, la ganancia de una antena toma en cuenta tanto las propiedades direccionales de ésta como la eficiencia. La definición de ganancia dice que "es la razón de la intensidad de radiación en cualquier dirección a la radiación de intensidad que sería obtenida si la potencia aceptada por la antena fuera radiada de manera isotrópica" [1]. La ganancia de una antena se expresa como sigue:

$$G = 4\pi \frac{\text{Intensidad de radiacion}}{\text{potencia total de entrada (aceptada)}} = 4\pi \frac{U(\theta, \varphi)}{P_{in}}$$

3.2.3Ancho de banda

El ancho de banda de una antena es un valor subjetivo dependiendo de las características buscadas en el funcionamiento de una antena. El ancho de banda se describe como "el rango de frecuencias dentro del cual el desempeño de la antena, con respecto a alguna característica se ajusta a un estándar especificado" [1]. En otras palabras el ancho de banda se refiere al rango de frecuencias que cumplan las 26 características deseadas, las cuales pueden ser intensidad de potencia, potencia radiada, coeficiente de reflexión, coeficiente de transmisión, directividad, etc.

4.1 DISEÑO DE ANTENA TIPO PARCHE

Partiendo del modelo de análisis de balanis de un parche rectangular desde el modelo de línea de transmisión empezamos a recrear los valores del ejemplo 14.1 que está en dicho texto fig(3.8).

Example 14.1

Design a rectangular microstrip antenna using a substrate (RT/duroid 5880) with dielectric constant of 2.2, h = 0.1588 cm (0.0625 inches) so as to resonate at 10 GHz. *Solution*: Using (14-6), the width W of the patch is

$$W = \frac{30}{2(10)}\sqrt{\frac{2}{2.2+1}} = 1.186 \text{ cm} (0.467 \text{ in})$$

The effective dielectric constant of the patch is found using (14-1), or

$$\epsilon_{\text{reff}} = \frac{2.2+1}{2} + \frac{2.2-1}{2} \left(1 + 12\frac{0.1588}{1.186}\right)^{-1/2} = 1.972$$

The extended incremental length of the patch ΔL is, using (14-2)

$$\Delta L = 0.1588(0.412) \frac{(1.972 + 0.3) \left(\frac{1.186}{0.1588} + 0.264\right)}{(1.972 - 0.258) \left(\frac{1.186}{0.1588} + 0.8\right)}$$
$$= 0.081 \text{ cm } (0.032 \text{ in})$$

The actual length L of the patch is found using (14-3), or

$$L = \frac{\lambda}{2} - 2\Delta L = \frac{30}{2(10)\sqrt{1.972}} - 2(0.081) = 0.906 \text{ cm} (0.357 \text{ in})$$

Finally the effective length is

$$L_e = L + 2\Delta L = \frac{\lambda}{2} = 1.068 \text{ cm} (0.421 \text{ in})$$

An experimental rectangular patch based on this design was built and tested. It is probe fed from underneath by a coaxial line and is shown in Figure 14.8(a). Its principal E- and H-plane patterns are displayed in Figure 14.19(a,b).

Fig(4.1) ejemplo 14.1 del texto de Balanis

Example 14.2

A microstrip antenna with overall dimensions of L = 0.906 cm (0.357 inches) and W = 1.186 cm (0.467 inches), substrate with height h = 0.1588 cm (0.0625 inches) and dielectric constant of $\epsilon_r = 2.2$, is operating at 10 GHz. Find:

a. The input impedance.

b. The position of the inset feed point where the input impedance is 50 ohms.

Solution:

$$\lambda_0 = \frac{30}{10} = 3 \text{ cm}$$

Using (14-12) and (14-12a)

 $G_1 = 0.00157$ siemens

which compares with $G_1 = 0.00328$ using (14-8a). Using (14-18a)

$$G_{12} = 6.1683 \times 10^{-4}$$

Using (14-17) with the (+) sign because of the odd field distribution between the radiating slots for the dominant TM_{010} mode

$$R_{in} = 228.3508$$
 ohms.

Since the input impedance at the leading radiating edge of the patch is 228.3508 ohms while the desired impedance is 50 ohms, the inset feed point distance y_0 is obtained using (14-20a). Thus

$$50 = 228.3508 \cos^2\left(\frac{\pi}{L}y_0\right)$$

or

 $y_0 = 0.3126$ cm (0.123 inches)

Fig(4.2) ejemplo 14.2 del texto de Balanis

Implementamos cada ecuación en Matlab para cerciorarnos de los valores que corresponden a cada variable como se muestra a continuación. fig(4.3)

```
Calculos_de_ej_14_1_2.m 🛛 🗶 Calculos_proyecto.m
                                            \times
                                               +
1
        $14.1
 2 -
        clc
 3 -
        Er=2.2
        h=0.1588
 4 -
 5 -
        f=10
        c=30
 6 -
 7
        W = (c/(2*f))*sqrt((2/(Er+1)))
 8 -
 9 -
        Ereff = (Er+1)/2 + (Er-1)/2 * (1+12 * (h/W))^{(-1/2)}
        DltL=(h*0.412)*((Ereff+0.3)*(W/h)+0.264)/((Ereff-0.258)*(W/h)+0.8)
10 -
11 -
        L=c/((2*f)*(sqrt(Ereff)))
12
13
        $14.2
14
15 -
        Lamb0 = c/f
16 -
        k0=(2*pi)/Lamb0
17 -
        Zin=50
18 -
        G1 = (1/90) * (W/Lamb0)^2
19 -
      G1 8a=(W/(120*Lamb0))*(1-((1/24)*(k0*h)^2))
20 -
      G12=6.1683e-4
21 -
       Rin=1/(2*G1)
22 -
        G12 1=(2/Rin)-G1
23
24 -
        Y0=acos(sqrt(Zin/Rin))*(L/pi)
```

Fig(4.3) ejercicios ej 14.1 y ej 14.2 en Matlab

Name 🔺	Value
🕂 ans	2
🗄 c	30
🕂 DitL	0.0829
🕂 Er	2.2000
🕂 Ereff	1.9716
🛨 f	10
🕂 G1	0.0017
🕂 G12	6.1683e-04
🕂 G12_1	0.0052
🕂 G1_8a	0.0033
🖶 h	0.1588
Η k0	2.0944
🗄 L	1.0683
🕂 Lamb0	3
🕂 Rin	288.0000
🛨 w	1.1859
H Y0	0.3880
🛨 Zin	50

A partir de este ejemplo implementamos el Ansys una antena base para saber el manejo de herramientas y diseño que nos ofrece este programa. A continuación, mostramos los valores del diseño de antena base tipo parche. Fig(4.5)

Name	Value	Unit	Evaluated Value	Туре
W	1.186	cm	1.186cm	Design
1	0.906	cm	0.906cm	Design
1_mcinta	1.068	cm	1.068cm	Design
desb_1	1/4		0.2265cm	Design
desb_w	1/4		0.2265cm	Design
h_subst	0.1588	cm	0.1588cm	Design
h_cobre	18	um	18um	Design
w_subst	$w + 2*desb_w$		1.639cm	Design
l_subst	$1_mcinta + 1 + desb_1$		2.2005cm	Design
w_mcinta	0.5	mm	0.5mm	Design
w_corrugacion	w_mcinta/4		0.125mm	Design
y0	0.3126	cm	0.3126cm	Design
h_aire	5*h_subst		0.794cm	Design
w_puerto	5*w_mcinta		2.5mm	Design

Fig(4.5) Propiedades de diseño

Se muestra la estructura y los componentes de creación para la antena tipo parche base se crearon alrededor de 7 cajas BOX una para el cobre, sustrato y aire como principales de igual forma se crean una la cuales están siendo sustraídas que son las corrugaciones que lleva el parche y unimos la citan que es la línea de alimentación como se muestra en la fig(4.6)

Fig (4.6) Componentes de la antena tipo parche

Al implementar los valores y estructura de los complementos de creación se puede diseñar la antena parche como se muestra en la fig (4.7)

Fig(4.7) diseño de diseño

4.2 DISEÑO DE ANTENA TIPO CORRUGACION CÓNICA

Para seguir mejorando el ancho de banda de la antena tipo corrugacion cónica iniciamos realizando el mismo proceso anteriormente desarrollado, pero ahora con las siguientes especificaciones

Diseñar una antena parche rectangular, siguiendo los procedimientos presentados en los ejemplos del documento adjunto (Example 14.1 y 14.2), con las siguientes características:

- Frecuencia de operación: 1 GHz
- Substrato: FR4
- Permitividad del substrato: er = 4.4
- Espesor del substrato: 1.575 mm

- Determinar la posición de la inserción del punto de alimentación (y0) donde la impedancia de entrada es de 50 ohmios.

- Formula para para calcular dimensiones y constantes antena parche:
- En la metodología seguida para el cálculo de las dimensiones del parche el valor de la longitud (L) del mismo se calcula en un proceso de iteración. El primer paso consiste en determinar un valor inicial, el cual se obtiene de la siguiente expresión:

$$L = \frac{L}{2f_0\sqrt{\mathcal{E}_{eff}}}$$

Donde c es la velocidad de la luz en el vacío, f₀ es la frecuencia de resonancia y ε_r es la permitividad dieléctrica. A continuación se procede al cálculo de la permitividad efectiva (ε_{eff}), la cual se obtiene de la siguiente expresión:

$$\varepsilon_{eff} = \frac{\varepsilon r + 1}{2} + \frac{\varepsilon r - 1}{2} * \left[\frac{1}{(1 + 12 * \frac{h}{W})}\right]^{-1/2}$$
$$\Delta L = \mathbf{h} * \mathbf{0}.412 * \frac{(\varepsilon_{eff} + \mathbf{0}.3) * (\frac{W}{h} + \mathbf{0}.264)}{(\varepsilon_{eff} - \mathbf{0}.258) * (\frac{W}{h} + \mathbf{0}.8)}$$

$$W = \frac{C}{2f_0} * \sqrt{\frac{2}{\varepsilon_r + 1}}$$

```
Calculos_de_ej_14_1_2.m 🛛 💥
                          Calculos_proyecto.m
                                              +
                                           ×
        %14.1
 1
 2 -
        clc
 3 -
        Er=4.4
 4 -
        h=1.575e-3
 5 -
        f=le9
 6 -
        c=3e8
 7
 8 -
        W = (c/(2*f))*sqrt((2/(Er+1)))
 9 -
        Ereff=(Er+1)/2+(Er-1)/2*(1+12*(h/W))^(-1/2)
10 -
        DltL=(h*0.412)*((Ereff+0.3)*(W/h)+0.264)/((Ereff-0.258)*(W/h)+0.8)
11 -
        L=c/((2*f)*(sqrt(Ereff)))
12
        $14.2
13
14
15 -
        Lamb0 = c/f
16 -
        k0=(2*pi)/Lamb0
17 -
        Zin=50
18 -
        G1=(1/90)*(W/Lamb0)^2
19 -
       G1 8a=(W/(120*Lamb0))*(1-((1/24)*(k0*h)^2))
20 -
        G12=6.1683e-4
21 -
        Rin=1/(2*G1)
22 -
        G12 1=(2/Rin)-G1
23
24 -
        Y0=acos(sqrt(Zin/Rin))*(L/pi)
                      Fig(4.8) ejercicios ej 14.1 y ej 14.2 en Matlab
```

Partiendo de la antena tipo rectangular obtenida anteriormente se realiza la modificación a el parche de cobre sustrayendo de forma exponencial los laterales quedando en forma de cono como se muestra en la siguientes figuras (4.9) (4.10) (4.11).

Fig(4.9) Antena tipo parche

Name	Value	Unit	Evaluated Va	Туре
w	80	mm	80mm	Design
I	100	mm	100mm	Design
h_subst	1	mm	1mm	Design
h_cobre	18	um	18um	Design
ws	52	mm	52mm	Design
lg	36	mm	36mm	Design
ls	50	mm	50mm	Design
w1	1.9	mm	1.9mm	Design
s1	0.35	mm	0.35mm	Design
14	24.5	mm	24.5mm	Design
s2	0.5	mm	0.5mm	Design
15	9.5	mm	9.5mm	Design
s3	lg - 14 - 15		2mm	Design
w2	6	mm	6mm	Design
16	19	mm	19mm	Design
10	15	mm	15mm	Design
11	15	mm	15mm	Design
12	32	mm	32mm	Design
w_port	5*w1		9.5mm	Design
h_port	3*h_subst		3mm	Design
s_cierre	1.5	mm	1.5mm	Design

Fig(4.9) Dimensiones de antena parche

Fig(4.10) Antena tipo parche conica

Name	Value	Unit	Evaluated	Туре
w	80	mm	80mm	Design
I	100	mm	100mm	Design
h_subst	1	mm	1mm	Design
h_cobre	18	um	18um	Design
ws	52	mm	52mm	Design
lg	36	mm	36mm	Design
ls	50	mm	50mm	Design
w1	1.9	mm	1.9mm	Design
s1	0.35	mm	0.35mm	Design
14	24.5	mm	24.5mm	Design
s2	0.5	mm	0.5mm	Design
15	9.5	mm	9.5mm	Design
s3	lg - 14 - 15		2mm	Design
w2	8	mm	8mm	Design
16	19	mm	19mm	Design
10	15	mm	15mm	Design
11	15	mm	15mm	Design
12	32	mm	32mm	Design
w_port	5*w1		9.5mm	Design
h_port	3*h_subst		3mm	Design
s_cierre	1.5	mm	1.5mm	Design
amp	2.4	mm	2.4mm	Design
tasa	272.692		272.692	Design

Fig(4.10) Dimensiones de antena tipo conica

□ 🎲 Model □ - 🖉 Solids	Propertie Comman	s: 2_antena_ranu d	ra - 2_ranura_conica_exp - Modeler		-
copper coppe		Name Command Coordinate Sys X(_u,_v) Y(_u,_v) Z(_u,_v) Start _u End _u Start _v End _v	Value Create Equation Surface Global amp*_v*exp(_u*tasa) _u h_subst Ig Ig+Is -1 1	Evaluated Value	Description
B - Unite B - I				 Aceptar	Cancelar Aplicar

Fig(4.11) Sustracción de exponencial

4.3 DISEÑO DE ANTENA TIPO CORRUGACION CÓNICA

Partiendo de la antena tipo conica anteriormente diseñada se crean rectángulos de forma exponencial que están a nivel de l parche puesto que no debe ser más alto del cobre definiendo Wr como $\frac{ls}{16}$

Para un valor de 3.125mm inicialmente, las corrugaciones también cuentan con un valor de lr establecido como 8mm para la separación de las corrugaciones declaramos la variable n2 y para distribución de las 5 corrugaciones definimos como pr1 para una forma exponencial iguala la de la antena tipo conica como se ve en la tabla de dimensiones.

Name	Value	Unit	Evaluated Va	Туре
w	80	mm	80mm	Design
I	100	mm	100mm	Design
h_subst	1	mm	1mm	Design
h_cobre	18	um	18um	Design
ws	52	mm	52mm	Design
lg	36	mm	36mm	Design
ls	50	mm	50mm	Design
w1	1.9	mm	1.9mm	Design
s1	0.35	mm	0.35mm	Design
14	24.5	mm	24.5mm	Design
s2	0.5	mm	0.5mm	Design
15	9.5	mm	9.5mm	Design
s3	lg - 14 - 15		2mm	Design
w2	6	mm	6mm	Design
16	19	mm	19mm	Design
10	15	mm	15mm	Design
11	15	mm	15mm	Design
12	32	mm	32mm	Design
w_port	5*w1		9.5mm	Design
h_port	3*h_subst		3mm	Design
s_cierre	1.5	mm	1.5mm	Design
amp	2.4	mm	2.4mm	Design
tasa	272.692		272.692	Design
n1	30	mm	30mm	Design
n2	2	mm	2mm	Design
pr1	ls+n1		80mm	Design
lr	8	mm	8mm	Design
wr	(ls/2)/8		3.125mm	Design
pr2	pr1-wr-n2		74.875mm	Design
pr3	pr2-wr-n2		69.75mm	Design
pr4	pr3-wr-n2		64.625mm	Design
pr5	pr4-wr-n2		59.5mm	Design

Fig(4.12) Dimensión de antena cónica con corrugaciones

Fig(4.13)Diseño de antena cónica con corrugaciones

4.4 DISEÑOS Y VARIACIONES DE ANTENA TIPO CORRUGACION CÓNICA

En la búsqueda de diseños o formas para la antena que satisfagan el ancho de banda deseada, se realizaron la siguientes simulaciones arrojando los valores según tabla a continuación, estos resultados tuvieron una ganancia minina por lo cual fueron desacatos en vista de que no cumplieron los requerimientos planteado para el proyecto, sin embargo fueron de mucha utilidad puesto que con esta serie de iteraciones se identificó y clasifico los resultados buenos y los no que aportaron una ganancia significativa siendo los que pasaron este filtros los > 121% o 20.91 dB:

sep_n2	N_r	Wr (mm)	Lr (mm)	tasa	amp(m)	f1	f2	f0 (prom geome)	FBW
2	5	4,167	8	27,2692	2,40E-03	0,968	2,896	1,674314188	115,15%
2	5	3,5715	8	27,2692	2,40E-03	0,968	3	1,683539129	116,42%
2	5	1,5625	8	27,2692	2,40E-03	0,968	3,04	1,715435805	120,79%
2	5	3,125	3	27,2692	2,40E-03	0,968	3,04	1,715435805	120,79%
2	5	3,125	6	27,2692	2,40E-03	0,968	3	1,704112672	119,24%
2	5	3,125	7	27,2692	2,40E-03	0,968	2,992	1,701839005	118,93%
2	5	3,125	8	27,2692	2,40E-03	0,968	3,104	1,733398973	123,23%
2	5	3,125	9	27,2692	2,40E-03	0,968	2,9363	1,685923604	116,75%
2	3	3,125	8	27,2692	2,40E-03	0,977	3,016	1,716575661	118,78%
2	3	12,5	8	27,2692	2,40E-03	0,977	2,76	1,642108401	108,58%
2	3	6,25	8	27,2692	2,40E-03	0,977	3,04	1,723392004	119,71%
2	3	2,7778	8	27,2692	2,40E-03	0,977	3,03	1,720555143	119,32%
7	5	3,125	8	27,2692	2,40E-03	0,968	2,856	1,662711039	113,55%
2	10	3,125	10	27,2692	2,40E-03	0,968	2,768	1,636894621	109,96%
2	6	3,125	10	27,2692	2,40E-03	0,968	2,87	1,666781329	114,11%

Tabla 4. FBW descartados

A continuación de muestran las antenas con variaciones correspondientes a los anchos de banda que no dieron una optimización superior a la antena cónica con 5 corrugaciones.

Fig(4.14)Diseño de antena cónica con mayor separación con corrugaciones

Fig(4.18)Diseño de antena cónica con 6 corrugaciones

ig(4.17)Diseño de antena cónica con 10 corrugaciones

Capítulo 5 Análisis y Resultados 5.1 ANCHO DE BANDA ANTENA TIPO CÓNICA

Para la primera etapa de mejoramiento de antena se varió su ancho (W1 y W2) mediante una serie de iteraciones con la cual llegamos a un punto óptimo de utilización eficiente de los campos eléctricos y magnéticos que bordean a microparche.

Una vez definimos las dimensiones adecuadas para nuestra antena, procedimos con la búsqueda de la mejor relación tamaño vs. ancho de bando posible, esto se evidencia en la siguiente tabla 1.2 en donde el mejor resultado variando W2 y teniendo W1 fijo fue de 70,08%. Por otro lado, se mantuvo fijo el ancho W2 y se varió W1 siendo el mejor resultado un FBW de 116%.

Finalmente, y luego de 2 iteraciones se tomó el mejor W1 (12,6034mm) dejándolo fijo y se varió W2 para así obtener la mejor tasa y amplitud sin que se desborde el parche del sustrato logrando un aprovechamiento del ancho de banda como se nuestra antena parche resultando en una mejora del 120,13% como se muestra en la imagen Fig. (5.1).

w1(mm)	w2(mm)	tasa	amp(m)	f1	f2	f0 (prom geome)	FBW
6,6834	49,2754	40	7,90E-04	1,36	2,144	1,707583087	45,91%
6,6834	56,9254	42,842	7,15E-04	1,36	2,216	1,736018433	49,31%
6,6834	64,5754	45,3638	6,53E-04	1,336	2,264	1,739167617	53,36%
6,6834	72,2254	47,603	6,02E-04	1,368	2,712	1,926140182	69,78%
6,6834	79,8754	49,6165	5,60E-04	1,344	2,672	1,89503773	70,08%
6,6834	41,6254	36,5814	8,95E-04	1,392	2,16	1,733989619	44,29%
12,6034	79,8754	36,93	1,70E-03	0,976	2,96	1,69969409	116,73%
18,5234	79,8754	29,2287	3,20E-03	0,976	2,912	1,685856459	114,84%
24,4434	79,8754	23,6822	5,20E-03	0,976	2,84	1,66488438	111,96%
30,3634	79,8754	19,3446	7,60E-03	0,976	2,776	1,646018226	109,35%
36,2834	79,8754	15,7822	1,03E-02	0,976	2,704	1,624531933	106,37%
42,2034	79,8754	12,7593	1,33E-02	0,976	2,664	1,612471395	104,68%
12,6034	49,2754	27,2692	2,40E-03	0,976	3,048	1,724774768	120,13%
12,6034	56,9254	30,1555	2,10E-03	0,968	2,992	1,701839005	118,93%
12,6034	64,5754	32,6773	1,90E-03	0,96	2,968	1,687981043	118,96%
12,6034	72,2254	34,9165	1,80E-03	0,968	2,976	1,697282534	118,31%
12,6034	79,8754	36,930	1,70E-03	0,968	2,96	1,692713797	117,68%
12,6034	87,5254	38,7592	1,60E-03	0,968	2,9	1,675470083	115,31%

Tabla 1.2 valores ancho de banda

La figura que se muestra a continuación corresponde al primer diseño de antena tipo conica donde mediante las variaciones descritas anteriormente en W1 y W2 se logró un resultado máximo de FBW de 120,13% con una tasa de 27.2692 y amplitud de 2.40x10³.

Fig. 5.7 Antena tipo cónica

5.1.1 Parámetro S₁₁

Este parámetro mide la cantidad de potencia que se está reflejando en comparación con la cantidad de potencia que se esta induciendo en el puerto. La grafica que se muestra en la fig. 5.8 demuestra que obtuvimos una reflexión de onda despreciable situada a partir de los -10dB.

5.1.2 Patrón de radiación en plano E antena tipo cónica

Fig. 5.9 Patrón plano E

5.1.3 Patrón de radiación en el plano H tipo cónica

En el plano de radiación podemos observar que obtuvimos una ganancia de 1.14 con un ancho de haz según cálculo a continuación:

Ancho de haz de 3 dB = Punto máximo de (G) - 3 dB = 1.14 - 3 = -1.86 dB con ángulo de 150°

Fig. 5.10 Patrón plano H

5.1.4 Patrón de radiación 3D

El patrón 3D integra las planos y ganancias de campos E y H con resultados de ganancia de 1.14 para ambos casos con frecuencia central de 2.4GHz.

Fig. 5.11 Patrón plano E y H en 3D

46

5.2 ANCHO DE BANDA ANTENA TIPO CÓNICA CON CORRUGACIONES

Para la primera etapa de pruebas de diseño, se insertaron 5 corrugaciones al parche variando al ancho de esta siendo el punto óptimo el ensayo con medida WR de 3.125mm dejando las demás variables fijas. Como lo son **lr** que es la longitud de cada corrugación de igual forma se hizo un exponencial para que varie la longitud con un tasa y un amplitud fija de cada corrugación puesta según su Wr como se muestra en la siguiente tabla fig(5.12)

sep_n2	N_r	Wr (mm)	Lr (mm)	tasa	amp(m)	f1	f2	f0 (prom geome)	FBW
2	5	4,167	8	27,2692	2,40E-03	0,968	2,896	1,674314188	115,15%
2	5	3,5715	8	27,2692	2,40E-03	0,968	3	1,683539129	116,42%
2	5	3,125	8	27,2692	2,40E-03	0,968	3,104	1,733398973	123,23%
2	5	2,7778	8	27,2692	2,40E-03	0,968	3,088	1,728925678	122,62%
2	5	1,5625	8	27,2692	2,40E-03	0,968	3,04	1,715435805	120,79%

Fig. 5.12Tabla de variaciones de Wr

Mejor Ancho de banda:

F1= frecuencia inicial

F2= frecuencia Final

F0= frecuencia central

 $F0 = \sqrt{F1 * F2}$, Promedio Geométrico

$$FBW(Hz) = \frac{F2-F1}{F0} = \frac{3,104-0,968}{1,74} = 123,23\% \text{ o en decibeles} = 10Log_{10}(123,23) = 20.91 \text{ dB}$$

$$FBW(W) = \frac{F2 - F1}{F0} = \frac{2.06x10^{-33} - 6.42x10^{-34}}{1.16x10^{-33}} = 1.223 W = 10Log_{10}(1.223)$$
$$= 0.875 dB$$

Como podemos observar en la fig (5.12) logramos optimizar un 3,23% de ancho de banda realizando la variación en Wr de igual forma para llegar este porcentaje se hicieron variaciones en las demás variables buscando una mejor optimización como se mostrará en el literal 5.3 estos valores fueron implementados para el diseño de la antena como se muestra en la siguiente tabla. Fig (5.13) Diseño de Antena tipo cónica con corrugaciones fig (5.14)

Name	Value	Unit	Evaluated Va	Туре	
w	80	mm	80mm	Design	
I	100	mm	100mm	Design	
h_subst	1	mm	1mm	Design	
h_cobre	18	um	18um	Design	
ws	52	mm	52mm	Design	
lg	36	mm	36mm	Design	
ls	50	mm	50mm	Design	
w1	1.9	mm	1.9mm	Design	
s1	0.35	mm	0.35mm	Design	
14	24.5	mm	24.5mm	Design	
s2	0.5	mm	0.5mm	Design	
15	9.5	mm	9.5mm	Design	
s3	lg - 14 - 15		2mm	Design	
w2	6	mm	6mm	Design	
16	19	mm	19mm	Design	
10	15	mm	15mm	Design	
11	15	mm	15mm	Design	
12	32	mm	32mm	Design	
w_port	5*w1		9.5mm	Design	
h_port	3*h_subst		3mm	Design	
s_cierre	1.5	mm	1.5mm	Design	
amp	2.4		2.411111	Design	
tasa	272.692		272.692	Design	
n1	20	mm	20mm	Dosign	
n2	2	mm	2mm	Design	
pr1	ls+n1		80mm	Design	
	0		omm	Design	
wr	(ls/2)/8		3.125mm	Design	
nr2	nr1-wr-n2		74 875mm	Design	
pr3	pr2-wr-n2		69.75mm	Design	
pr4	pr3-wr-n2		64.625mm	Design	
pr5	pr4-wr-n2		59.5mm	Design	

Fig(5.13) Tabla de diseño Antena tipo cónica con corrugación

Fig(5.14) Diseño de Antena tipo conica con corrugacioness

Fig(5.14.1) Antena tipo cónica con corrugaciones

5.2.1 Parámetro S11

En el parámetro S_{11} ajustamos la frecuencia de inicio y final sobre la ganancia de operación de -10dB en un rango de 1GHz y 3.1GHz que es el rango en cual se desempeña la antena. El resultado obtenido para este diseño en términos de eficiencia energética fue el mejor debido a que se logra garantizar que la reflexión de las ondas sea despreciable.

Fig(5.15)Grafica ganancia Antena tipo cónica con corrugaciones

5.2.2 PATRON DE RADIACION EN EL PLANO E

La fig(5.16) el patrón característico de las antenas Microstrip, como se mencionó en los capítulos anteriores este tipo de antena presenta una delgada capa del material conductor el cual será el parche radiador y por debajo de este se ubicará el sustrato dieléctrico, este sustrato permite que la radiación emitida por la antena se produzca hacia arriba del sustrato, generando un lóbulo principal y dos lóbulos secundarios o nulos. Lo que nos indica que este tipo de antena es poco directiva ya que presenta un lóbulo principal el cual se encuentra presente desde 60° hasta 120°.

Fig(5.16) Patrón de radiación plano E

5.2.3 PATRON DE RADIACION EN EL PLANO H

Fig(5.17) Patrón de radiación plano H

5.2.3 PATRON DE RADIACION EN 3D

Respectivamente en la Fig(5.18) se puede evidenciar la directividad de la antena propuesta, en donde se aprecia la potencia radiada y la dirección de la misma. La dirección de propagación de la antena de acuerdo con la ilustración será de 90° con un valor máximo de potencia radiado de 1.21 dB.

Fig(5.18) Patrón de radiación en 3D

Los valores obtenidos en cuanto a los principales parámetros de nuestra antena son:

Ganancia (*G*) = 1.21dB

Directividad (**D**) = 1.64 dB

Eficiencia de radiación $(\eta_r) = \frac{10^{1.21/10}}{10^{1.64/10}} = 0.906$

Relación frente – espalda ("Front to back ratio", FTBR) = $FTBR = \frac{G_{front}}{G_{back}} = \frac{10^{1.1611/10}}{10^{-10.4504/10}} = 14.5$ (Concentra de haz de radiación en una dirección especifica) Ancho de haz de 3 dB = Punto máximo de (**G**) - 3 dB = 1.21 – 3 = -1.79 dB con ángulo de 150

ALCANCE DE LA ANTENA

Para determinar el alcance de la antena haremos uso de la ecuación de Friis presentada a continuación:

$$P_r = P_t * Gt * Gr \left(\frac{\lambda}{4\pi d}\right)^2$$

 $\begin{array}{l} P_r = \mbox{Umbral mínimo de potencia que el receptor es capaz de captar} \\ P_t = \mbox{Potencia de Transmisión} \\ Gt = \mbox{Ganancia de la antena transmisora} \\ Gr = \mbox{Ganancia de la antena receptora} \\ \lambda = \mbox{Longitud de onda} \\ d = \mbox{Alcance} \end{array}$

d =

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{3 \times 10^9} = 0.1 \, m$$

Pt = 1 W Pr = -60 dBm $Gt = Gr = 1.21 dB = 10^{\frac{1.21}{10}} = 1.32$

Despejando d (alcance), obtenemos:

$$d^{2} = \frac{P_{t} * G_{t} * G_{r} * \lambda^{2}}{P_{r} * 16 * \pi^{2}}$$
$$d^{2} = \frac{P_{t} * G_{t} * G_{r} * c^{2}}{P_{r} * 16 * \pi^{2} * f^{2}}$$
$$d = \sqrt{\frac{P_{t} * G_{t} * G_{r} * c^{2}}{P_{r} * 16 * \pi^{2} * f^{2}}}$$
$$\sqrt{\frac{1 * 1.32 * 1.32 * (3 \times 10^{8})^{2}}{10^{\frac{-60}{10}} \times 10^{-3} * 16 * \pi^{2} * (3 \times 10^{9})^{2}}}$$

d = 332.17 m

Capítulo 6 Conclusiones y Recomendaciones

CONCLUSIONES

- Se propone una metodología de diseño, soportada por simulaciones en el programa Ansys HFSS, de antenas ranuras cónicas con corrugaciones.
- La metodología de diseño de antenas presentada en este trabajo de grado, además de asegurar un adecuado funcionamiento de ellas, plantea un ambiente de desarrollo para la simulación y posterior fabricación de antenas.
- Se cumplieron los objetivos planteados del proyecto de grado, logrando diseñar una antena con ancho de banda fraccional del 123.1%, operando en el rango de frecuencia comprendido entre 0.9 GHz y 3.14 GHz.
- En el rango de operación de la antena se logra un coeficiente de reflexión inferior a -10 dB, garantizando el máximo aprovechamiento de la energía de entrada.
- El punto óptimo para lograr el mejor ancho de banda en relación con la variación del ancho (W_r) de las corrugaciones es de 3.125 mm. Variaciones superiores o inferiores a este valor generan una disminución del ancho de banda.

RECOMENDACIONES

- No se recomienda la inserción de más de 5 corrugaciones, puesto que la ganancia de la antena ranura cónica disminuye, posiblemente debido al acople entre las corrugaciones.
- No se recomienda un W₂ superior al ancho del substrato, porque se impide el desborde adecuado de los campos, lo cual afecta el desempeño de la antena.
- Se recomienda que los valores de tasa y amplitud de la variación exponencial de la ranura cónica estén dentro del rango de 26 a 27 para la tasa y de 2.2 mm a 2.4 mm para la amplitud, con el fin de tener un coeficiente de reflexión de la antena inferior a -10 dB.

Bibliografía

- [1] C. A. Balanis, Antenna Theory: Analysis and Design, Wiley-Interscience, 2005.
- [2] D. Pozar, Microwave Engineering Chapter 3 Transmission lines and waveguides, Boston, Massachusetts, USA: John Wiley & Sons, Inc, 2012.
- [3] A. M. Abbosh, Miniaturization of Planar Ultrawideband, Brisbane, Australia: IEEE, 2008.
- [4] L. S. Gustavo Quintero, "Analisis de patron de radiacion de una antena tipo parche de arreglo matricial de parches rectangulares," Pontifica Universidad Bolivariana, Bucaramanga, Colombia, 2012.
- [5] B. Rocha, "Metodologia para el diseño y constraucción de una antena de microcinta en la banda de WiMax a 3.5GHz," Instituto Politecnico Nacional, Tijuana, Mexico, 2007.
- [6] N. K. J. S. Q. T. I. William R. Deal, "A New Quasi-Yagi Antenna for Planar Active," Los Angeles, California, IEEE, 2000.
- [7] A. M. Abbosh, "Miniaturized Microstrip-Fed Tapered-Slot Antenna," Queenland, Australia, IEEE, 2009.
- [8] S.-K. J. Tzyh-Ghuang Ma, A Printed Dipole Antenna With Tapered Slot Feed for, Taipei, Taiwan: IEEE, 2005.