

Análisis del fenómeno No Show en un hotel de Bogotá y generación de un modelo de pronóstico por medio de la metodología BOX - JENKINS. Serie de tiempo 2010 – 2016

**Camilo Montaño Umaña** 

Fundación Universitaria Los Libertadores

Departamento de Ciencias Básicas

Especialización en estadística aplicada

Bogotá D.C. 2016



# Análisis del fenómeno No Show en un hotel de Bogotá y generación de un modelo de pronóstico por medio de la metodología BOX - JENKINS. Serie de tiempo 2010 – 2016

Camilo Montaño Umaña

Asesor estadístico: Juan Camilo Santana Asesor de estilo: Diana Patricia Walteros

Fundación Universitaria Los Libertadores

Departamento de Ciencias Básicas

Especialización en estadística aplicada

Bogotá D.C. 2016

| Nota de | Aceptación                      |
|---------|---------------------------------|
| -       |                                 |
| -       |                                 |
| _       |                                 |
|         |                                 |
| -       |                                 |
| -       |                                 |
| -       |                                 |
|         |                                 |
|         |                                 |
|         |                                 |
|         | Firma del presidente del jurado |
|         |                                 |
|         |                                 |
| -       |                                 |
|         | Firma del Jurado                |
|         |                                 |
| _       |                                 |
|         | Firma del Jurado                |
|         | i iiilia dei Julado             |

Bogotá, D.C 11 Junio del 2016

Las Directivas de la Universidad de
Los Libertadores, los jurados calificadores y el cuerpo
Docente no son responsables por los
Criterios e ideas expuestas En el presente documento.
Estos corresponden únicamente a los autores

# **TABLA DE CONTENIDO**

| Resumen             | V  |
|---------------------|----|
| Introducción        | 1  |
| Objetivos           | 2  |
| Marco de referencia | 3  |
| Marco               |    |
| teórico             |    |
| Marco metodológico  | 10 |
| Resultados          | 13 |
| Conclusiones        | 27 |
| Referencias         | 28 |
| Anavas              | 20 |

# **LISTA DE TABLAS**

|                                                                                                                                              | Pág      |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Tabla 1. Valores descriptivos para la variable No Show                                                                                       | 13       |
| Tabla 2. Valores descriptivos para la variable Cantidad de Adultos                                                                           | 14       |
| Tabla 3. Valores descriptivos para la variable Cantidad de Niños                                                                             | 14       |
| Tabla 4. Valores descriptivos para la variable Nacionalidad                                                                                  | 15       |
| Tabla5. Valores descriptivos para la variable Tipo de compra anticipada<br>Tabla 6. Valores descriptivos para la variable Tipo de habitación | 15<br>16 |
| Tabla 7. Correlación entre las variables<br>Tabla 8 Incidencia de las variables exógenas en la variable No Show                              | 17<br>25 |

# **LISTA DE FIGURAS**

|                                                                              | Pág. |
|------------------------------------------------------------------------------|------|
| Figura 1. Flujos trimestrales de la Inversión Extranjera Directa en Colombia | 3    |
| Figura 2. Flujos sectoriales de la Inversión Extranjera Directa en Colombia  | 4    |
| Figura 3. Flujos Migratorios de entrada y salida 2007 – 2014.                | 5    |
| Figura 4. Flujos Migratorios totales de colombianos y extranjeros            | 6    |
| Figura5. Figura, ACF y PACF de la variable No Show 18                        |      |
| Figura 6. Figura, ACF y PACF de la variable No Show en Logaritmos            | 19   |
| Figura 7. Figura, ACF y PACF de la variable No Show luego de la              |      |
| Transformación Box – Cox                                                     | 20   |
| Figura 8. Ajuste del modelo ARMA (4, 0,11)                                   | 21   |
| Figura 9. Ajuste del modelo ARMAX (13, 0,6)                                  | 24   |
| Figura 19. Predicción de los valores No Show para los próximos 12 meses.     | 26   |

# **LISTA DE ANEXO**

|                                                    | Pág |
|----------------------------------------------------|-----|
| Anexo A. Series de tiempo según el modelo No Show. | 30  |

Análisis del fenómeno No Show en un hotel de Bogotá y generación de un modelo de pronóstico por medio de la metodología BOX – JENKINS. Serie de tiempo 2010 – 2016

Camilo Montaño Umaña\*

### Resumen

En el sector hotelero existe un fenómeno muy particular conocido como No Show, el cual consiste en el que un huésped adquiere el servicio de alquiler de un cuarto (o más) previamente al día en el cual va hacer uso del mismo. Pero el día en el cual debe hacer uso de ese servicio que adquirió, no se presenta y por tanto se genera la pérdida del mismo. Este fenómeno tiende a ser muy regular y se presenta con bastante frecuencia. La idea central de este artículo consiste en analizar el comportamiento del No Show y proponer un modelo ARMA (p, d, q) de la metodología Box — Jenkins que permita estimar el proceso generador y pronosticar la cantidad de veces que se repetirá dicho fenómeno en un periodo determinado.

Palabras claves: No Show, ARMA, Estacionariedad, Raíz unitaria, estocástico, ACF, PACF.

Clasificación JEL C01, C3, C51, C53

### Abstract

In the hotel sector there is a peculiar phenomenon known as No Show, which consist that a host acquires the service of renting a room (or more) prior to the day on which will make use of it. But the day which should make use of this service acquired, not is present and therefore the loss of it is generated. This phenomenon tends to be very regular and occurs quite frequently. The central idea of this article is to analyze the behavior of No Show and propose a model ARMA (p, d, q) from Box-Jenkins methodology to estimate the generating process and forecast the number of times that this phenomenon will be repeated in a given period.

Key Words: No Show, ARMA, Stationarity, Unit Root, stochastic, ACF, PACF.

JEL Clasification C01, C3, C51, C53 \* Economista de la Universidad Colegio Mayor de Cundinamarca y estudiante de Especialización en Estadística Aplicada de la Fundación Universitaria Los Libertadores. E-mail: edgarcamilomontano@gmail.com

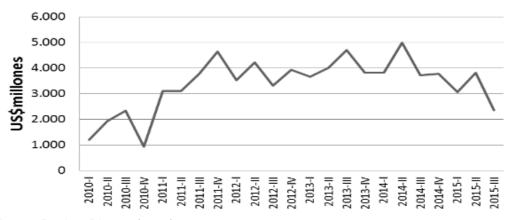
### **CAPITULO 1. Introducción**

El No Show es un fenómeno que se presenta con regularidad en los hoteles de Bogotá. Este consiste que un cliente (distinguido como huésped) no se presenta a la prestación de un servicio previamente contratado, lo que generalmente implica una pérdida del mismo (*Poraqui.net, 2015*). Para que se considere un No Show, debe tenerse en cuenta los siguientes criterios: El huésped no arribó al hotel pasadas las 6 pm hora local del hotel, también el huésped jamás debió avisar sobre su ausencia dado que si envía algún aviso de forma directa o indirecta dejará de contarse como No Show y tendrá la categoría de cancelación (la cual no analizaremos en este artículo).

El desarrollo de un modelo econométrico de series de tiempo basado en la metodología Box – Jenkins permite analizar el comportamiento del fenómeno No show ajustándose al proceso generador de datos, de forma tal que se logre realizar un pronóstico adecuado de este fenómeno. Actualmente este fenómeno se estudia a partir de un análisis descriptivo, sin ningún fundamento teórico complejo que permita realizar un análisis exhaustivo, el cual conlleve a la generación de pronósticos del No Show y a su vez tomar medidas necesarias para evitar la generación de los mismos.

Desde el 2010 la importancia del sector hotelero en el desarrollo del turismo en Colombia, ha permitido consolidar una economía con grandes proyecciones de rentabilidad y desarrollo. Por lo tanto, el ingreso del capital extranjero se convirtió en dinamizador de la productividad interna, incrementando la estabilidad en el riesgo financiero de grandes cadenas prestadoras de servicios de alto nivel. Por lo tanto, el comportamiento del fenómeno No Show en el sector hotelero, permite a dichas compañías una herramienta de predicción ante el fenómeno de la pérdida de servicios contratados. Además, junto con un modelo de series de tiempo la explicación de dicho fenómeno se ajustaría al proceso generador de datos, de manera que se logre desarrollar un pronóstico adecuado en periodos posteriores.

# **Objetivo General**

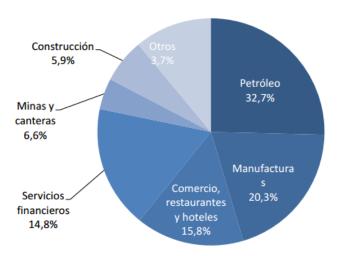

Realizar un modelo que permita explicar y pronosticar el comportamiento de la serie de tiempo del No Show para un hotel en Bogotá.

# Objetivos específicos

- Identificar los factores asociados al modelo para la predicción del número de No Shows mensuales que se están presentando en un hotel de la ciudad de Bogotá.
- Determinar las relaciones entre los factores que inciden en la generación de No Shows para un hotel de Bogotá para la predicción del número de fenómenos mensuales para la entidad que se está analizando.
- Desarrollar un modelo de serie de tiempo con el fin de determinar si dentro del proceso generador de datos existen variables X que determinen el comportamiento y valor esperado de la misma.
- Realizar un pronóstico del No Show para seis periodos posteriores a partir del mejor modelo encontrado.

### CAPITULO 2. Marco de Referencia

El turismo en Colombia ha tenido un crecimiento considerable en la última década destacándose particularmente en 2014 que ingresaron más de 2'565.333 visitantes internacionales (Zuñiga-collazos, 2016). Este número refleja qué desde el 2007 los visitantes crecieron más del 100%(Zuñiga-collazos, 2016). Este crecimiento se dio particularmente por las políticas que se implantaron desde el gobierno pasado y el actual (seguridad democrática) que debido al fortalecimiento y presencia de las fuerzas militares lograron posicionar al turismo como un motor de crecimiento económico en Colombia (Bravo & Rincon, 2015) logrando que múltiples empresas hayan trasladado capital a suelo colombiano. Esto ha generado que capitales extranjeros se trasladen a Colombia al considerarse uno de los países más sólidos de la región en términos económicos. Esto se refleja en la cifra de US\$ 10.778 millones que recibió Colombia en 2015 (Oficina de estudios económicos, 2015), mientras acumulado a marzo de 2016, la cifra asciende a US\$ 2.149,5 millones (Oficina de estudios económicos, 2016). El crecimiento de la IED en Colombia se puede apreciar en la figura 1.



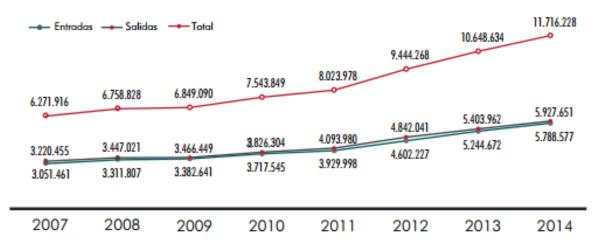

Fuente: Revista Dinero. (2016).

(Figura 1). Flujos trimestrales de la Inversión Extranjera Directa en Colombia, periodo 2010 – 2015.

La IED tuvo un crecimiento paulatino (con algunos outliers específicos) el cual lo encerró en una franja reflejando una estacionariedad del mismo. Entre el 2010 al 2015 pasó de US\$6430 millones a US\$12.108 millones, creciendo aproximadamente un 85%(Proexport, 2014).

Esto refleja que Colombia si fue impactado considerablemente por la inversión extranjera que se realizaba en el país. La IED que llegó al país se concentró principalmente en el sector de petróleos, manufactura y servicios (observar figura 1.2), particularmente el sector hotelero. Este se fue desarrollando considerablemente en los últimos cinco años consolidando cadenas reconocidas en el ramo tales como Hilton, Marriot, y NH hoteles (Portafolio, 2015). Estas Cadenas hoteleras se encuentran entre las 10 más grandes del mundo (Los apuntes del viajero, 2013) y hoy en día poseen locaciones en Bogotá. El sector hotelero en Bogotá ha crecido de la mano de la IED, de la construcción, de la valorización del suelo, etc., lo cual ha convertido a Bogotá como un centro económico de Latinoamérica, generando que el dinamismo del mercado bogotano sea mayor. Por ende, se requiere de más hoteles para brindar estadía a todos los ejecutivos que hacen parte de la fuerza imperante que mueve la economía bogotana.



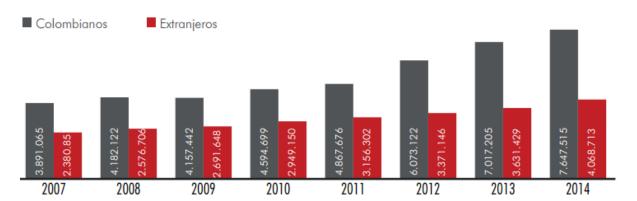

Fuente: Proexport. Reporte trimestral de inversión extranjera directa en Colombia. (2015).

(Figura 2). Flujos sectoriales de la Inversión Extranjera Directa en Colombia – 2015.

Cómo se lograr apreciar en la figura 2, el sector del comercio, restaurantes y hoteles participó un 15.8% en el total de la IED lo cual es un número relevante para el sector. Esto demuestra que el hotelería ha tenido mayor participación en el crecimiento del PIB.

# 2.1 Migración en Colombia

Otro factor relevante para analizar el fenómeno No Show en Colombia es la migración que se ha vivido en lo últimos años en el país. Gracias a la página web de Migración Colombia se lograron obtener los datos que se presentan a continuación. Entre el año 2007 y 2014 se contaron más de 33 millones de entradas de extranjeros y colombianos no residentes al país (Colombia, 2015). Este ingreso de personas mantuvo un crecimiento positivo desde 2007 el cual poseía una tendencia similar al crecimiento de la IED y el turismo en la nación. Dicha tendencia se percibe en el figura 3:




Fuente: Migración Colombia. Boletín trimestral de estadísticas. (2015).

(Figura 3). Flujos Migratorios de entrada y salida 2007 – 2014.

Como se puede apreciar en la figura 3, el crecimiento de entradas al país pasó de 3'051.461 personas a 5'788.577 personas casi un 100% También se observan que las salidas de personas fueron considerables, pasando de 3'220.455 personas a 5'927.651 personas. En total el flujo de personas tuvo un crecimiento del 87%. Este crecimiento se vio incentivado particularmente por los colombianos no residentes en Colombia. Los cuales tuvieron un flujo de 3'891.065 personas en 2007 pasaron a 7'647.515 en 2014 (Colombia, 2015). A continuación, se

presenta una figura de barras sobre el comportamiento de los flujos migratorios en Colombia discriminados entre colombianos y extranjeros.



Fuente: Migración Colombia. Boletín trimestral de estadísticas. (2015)

(Figura 4). Flujos Migratorios totales de colombianos y extranjeros

Finalmente se recurre al Plan sectorial de turismo para decir que el gobierno tiene estimado llegadas internacionales para los próximos 20 años de la siguiente manera:

Se tendrá un aumento de llegadas de 331 millones en los próximos 20 años, pasando de 204 millones en 2010 a 535 millones en 2030, provenientes de Asia – Pacifico. En Oriente medio y África se espera más del doble de las llegadas en ese periodo, pasando de 61 millones a 149 millones y 50 millones a 13 millones respectivamente. Con respecto a Europa los cálculos apuntas a que de 475 millones pase a 744 millones y en las américas pase de 150 millones a 248 millones (Arciniegas, 2014).

Finalmente se describen los motivos que llevaron a decidir le periodo de análisis de este estudio. Se escogió un periodo entre 2010 y 2016 por dos razones: I) porqué en este punto es cuando el turismo y la IED en Colombia tomaron mayor fuerza lo cual generó un crecimiento en el sector hotelero y contribuyo a la generación de la variable de estudio. Y II) porque este ha sido un periodo de transición en el cual la TRM se ha comportado más volátil y ha arrojado señales al mercado la cuales el sector hotelero ha sabido interpretar y ha sacado provecho de ellas. Una de estas señales es la depreciación del peso, lo cual hizo que los precios relativos del hotelería en Colombia para los compradores foráneos se

redujeran (debido al alza del dólar). Esto ha incentivado que las personas de otros países con monedas más costosas vengan a Bogotá dado que se percepción del precio es más amigable (dado que los precios son más baratos).

### 2.2 No Show

Luego de haber realizado una contextualización del sector hotelero en Bogotá, ahora resulta imperativo explicar la variable de estudio para este trabajo. Para las personas especialistas en la rama de la hotelería, el No Show se considera:

No presentarse en el hotel antes de las 18:00 horas (hora local del hotel) del día previsto de llegada, sin comunicación previa por parte del cliente. El hotel considerará la reserva como "no show" y será integramente cancelada de forma automática. El importe cargado será el expresamente previsto en el apartado "no show" incluido en las "condiciones de la tarifa" aplicables a su reserva. (Barceló Hoteles & Resorts, s.f).

A partir de la cita anterior, se puede decir que existen dos condiciones básicas para que haya No Show: a) Qué el huésped (la persona que adquirió el servicio) no se presente antes de las 6:00 pm (18 horas) locales del hotel. Se considera que esta es la hora en la cual el hotel toma otra percepción del día y lo da prácticamente por cerrado. Y b) es que el huésped no se comunice con el hotel por algún medio (teléfono, correo electrónico, páginas web, etc.) para avisar y/o advertir que no llegará al hotel para hacer uso del servicio que contrato previamente. Dado que si el huésped realizará esta acción perdería el statu quo de No Show y pasaría a categorizarse como cancelación (la cual no es la variable que interesa analizar).

### Variables exógenas

Para este estudio se consideraron sietes variables exógenas. Estas variables son:

1. El tipo de habitación: dado que en la hotelería se maneja diversos tipos de habitación con características diferentes (siendo las más económicas las más bajas), se supone que dependiendo del tipo y el costo de la habitación que adquirió el huésped en su compra el huésped optará por no presentarse a hacer uso del servicio que compró. Este supuesto consta que entre más cara la habitación, menor intención de transformarse en No Show tendrá el huésped.

- 2. Niños: Se plantea el supuesto de que si la persona que adquiere el servicio viene acompañado por un niño o niña (por lo general su hijo), tenderá menos a transformarse en No Show.
- 3. Tipo de compra anticipada: Esta variable hace referencia a la cantidad de días de diferencia que hay entre el día en que se realizó la reserva y el día en el que debe hacer uso de la misma.
- 4. Nacionalidad: Esta variable discrimina en dos tipos: las personas de nacionalidad colombiana y las personas de otras nacionalidades que son clasificados como extranjeros.

### **CAPITULO 3. Marco Teórico**

La metodología Box – Jenkins es la base de toda la teoría de análisis de series de tiempo moderna, la cual consistía en el análisis de las propiedades probabilísticas, o estocásticas de las series de tiempo económicas (Gujarati & Porter, 2006). En los modelos de Box – Jenkins Yt (la variable endógena) se explica mediante valores pasados o rezagos de sí misma y por los términos de error estocásticos(Gujarati & Porter, 2006). Para poder desarrollar esta metodología es necesario que la serie de tiempo sean estacionarias, ya que cuando es estacionaria en media, o lo que es lo mismo integrada de orden I (0) se dice que se presenta raíz unitaria(Breve & Perron, 2004). Esto quiere decir que la serie no tendrá un media cero ni una varianza constante lo cual complejo calcular el valor esperado de la misma.

Por tanto, uno de los primeros pasos para llevar a cabo este tipo de modelos es la identificación de su orden integración. Uno de los mecanismos que permiten determinar esto es la distribución asintótica del estadístico t bajo H0 que se conoce como distribución de Dickey – Fuller en honor a Dickey y Fuller(1979) (Wooldridge, 2009). Esta prueba permite saber en qué orden se encuentra integrada una serie de tiempo y si es necesario intervenirla para poder analizarla. Luego de haber determinado la integración de las variables si es necesario evaluar los parámetros (*p*, *d*, *q*) del modelo. Esto se hace realiza mediante la ACF; Función de autocorrelación, la cual se encarga de medir la autocorrelación entre dos variables separadas por k periodos (Villavicencio, 2010)y el PACF: Función de autocorrelación parcial. Esta mide la correlación entre dos variables separadas por k periodos cuando no se considera la dependencia creada por los retardos intermedios existentes entre ambas(Villavicencio, 2010).

Llevar a cabo estos pasos permitirán contrastar (presentar evidencia empírica en favor o en contra) de alguna teoría sobre las características o variables a las que se refieren los componentes de dicha serie. (Mauricio, 2004). Que en este caso sería el comportamiento de la variable No Show la cual es el punto de interés de este escrito. Ya explicada la teoría que se usará para desarrollar el modelo se

presentará a continuación el marco metodológico con el fin de empalmar al lector sobre la serie que se usará como insumo de este trabajo.

# **CAPITULO 4. Marco Metodológico**

Para llevar acabo este estudio se analizó una serie de tiempo que consta de 76 observaciones con una frecuencia mensual, comprendidas entre el periodo Enero -2010 hasta Abril – 2016 (la cual se puede apreciar en el apéndice). La variable de análisis se presenta con el nombre No Show la cual consiste en la cantidad de fenómenos de este tipo que se presentaron durante un mes. El conteo se realizó de forma diaria (por medio del número de reserva de cada huésped) y al final se realizó una agrupación para dar con el valor general del mismo.

Las variables exógenas que se incluyeron en este modelo, hacen referencia a cada una de las características que poseían los huéspedes que compraron el servicio de alojamiento. Por lo general estas características son recolectadas a través de páginas web en las cuales los usuarios realizan sus compras y deben llenar unos campos predeterminados. Para el análisis de la variable endógena y las variables exógenas y el diseño de los modelos ARMA (p, d, q), se recurrió al software estadístico R (https://cran.r-project.org/), de uso libre el cual tiene la capacidad de modelar los datos de la manera que se requiere para desarrollar este artículo. A continuación, se presentan las variables explicativas que se incluyeron en el análisis que será presentado en el siguiente capítulo.

- a. Cantidad de adultos: Esta variable se clasifica en tres tipos I) un adulto la cual hace referencia a la cantidad de no shows que hubo donde el cuarto estaba reservado para un solo adulto; II) dos adultos la cual hace referencia a la cantidad de no shows que hubo donde el cuarto estaba reservado para dos adultos y III) tres adultos la cual hace referencia a la cantidad de no shows que hubo donde el cuarto estaba reservado para tres adultos.
- b. Cantidad de niños: Esta variable se refiere a la cantidad de niños que se incluyeron a la hora de realizar una reserva y se transformaron en un

fenómeno No Show. Se considera una variable cuantitativa discreta de razón.

- c. Nacionalidad: Esta variable hace referencia a la cantidad de No Shows que suceden a partir de la nacionalidad de los huéspedes. Acá la nacionalidad se clasifica en dos: I) los de nacionalidad colombiana, denominados como colombianos en este estudio y II) los de otras nacionalidades denominados como extranjeros en este estudio.
- d. Tipo de compra anticipada: esta variable se clasifica en cuatro tipos:
  - Contra anticipada tipo uno, la cual hace referencia a una anticipación de compra (día de llegada menos día de compra del servicio) menor a 15 días.
  - II) Compra anticipada tipo dos, la cual hace referencia a una anticipación menor a 30 días.
  - III) Compra anticipada tipo tres, la cual hace referencia a una anticipación menor a 60 días
  - IV) Compra anticipada tipo cuatro, hace referencia a aquellas compras que se hicieron con 60 días o más de anticipación.
- e. Tipo de habitación: esta variable hace referencia a la cantidad de No Shows que hubo durante un periodo determinado por tipo de habitación. Para este estudio son cuatro tipos de habitaciones: Superior, Executive, Business y suite, las cuales poseen un orden categórico donde Superior es la habitación más económica y Suite es la habitación más costosa.

En la generación del modelo ARMA se siguieron cuatro pasos:

1. Realización de gráfica de la serie, la función de autocorrelación (ACF) y la función de autocorrelación parcial (PACF) para lograr identificar los parámetros (p, d, q). En este punto se puede identificar la volatilidad de la serie y si es necesario realizar algún suavizamiento a través de logaritmos o transformación Box - Cox. Acto seguido se realizará una prueba de Dickey – Fuller con el fin de observar si la serie está integrada en d=0, dando como resultado una serie que presenta estacionariedad.

- Estimación, Luego de haber determinado que orden de integración posee la base de datos, se asignan los órdenes para los autoregresivos y los promedios móviles con el fin de incluir todos los rezagos en las bandas de confianza.
- Comprobación, una vez realizado el modelo deberán realizarse las pruebas pertinentes (Ljung – Box, Shapiro – Wilk y Jarque – Bera) para determinar si el modelo no tiene problemas de autocorrelación y posee normalidad en los residuos.
- 4. Pronostico, luego de haber estimado el modelo que se ajuste al proceso generador de datos se realizará el pronóstico para los 12 meses siguientes.

# CAPITULO 5. Análisis y resultados

Con el fin de afianzar al lector con la información que se está tratando en este artículo, se realiza un análisis descriptivo sobre cada una de las variables con el fin de brindar mayor información sobre la serie de tiempo. Es de recordar que el periodo de análisis de los datos es de enero de 2010 hasta abril de 2016; también cabe resaltar que la frecuencia de los datos es mensual.

# Análisis descriptivo

Tabla 1. Valores descriptivos para la variable No Show

| NO_SHOW                  |        |
|--------------------------|--------|
| Media                    | 1294   |
| Error típico             | 55.20  |
| Mediana                  | 1,186  |
| Moda                     | 1,440  |
| Desviación estándar      | 481.25 |
| Curtosis                 | 0.07   |
| Coeficiente de asimetría | 0.73   |
| Mínimo                   | 372    |

| Máximo | 2,611  |
|--------|--------|
| Suma   | 98,328 |

Fuente: Elaboración propia. (2016)

La variable no show posee una media de 1294 y una desviación estándar de 481.25. A partir de estos dos datos se obtiene el coeficiente de variación el cual arroja un valor de 37.19 indicando que el fenómeno No Show posee una dispersión muy alta y la media no es una medida representativa y es mejor usar la mediana como media de tendencia central. Vemos que la mediana tiene un valor de 1,186 No shows. También se observa que posee una moda de 1,440 No shows siendo el valor que más se repite en este estudio. Se observa un coeficiente de asimetría 0.73, lo cual indica que los datos poseen una distribución sesgada a la derecha evidenciando que la mayoría de los datos toman valores bajos.

Tabla 2. Valores descriptivos para la variable Cantidad de Adultos

|                |                | CANTIDAD DE    | ADUI TOS   |                |       |
|----------------|----------------|----------------|------------|----------------|-------|
| UN ADULT       |                | DOS ADU        |            | TRES ADULTOS   |       |
| Media          |                |                | 47         |                | 28    |
| Error típico   | 8.48           | Error típico   | 1.89       | Error típico   | 1.56  |
| Mediana        |                | Mediana        | 44         | Mediana        | 26    |
| Moda           | 409            | Moda           | 44         | Moda           | 25    |
| Desviación     |                | Desviación     | 16.4       | Desviación     | 13.6  |
| estándar       | estándar 73.93 |                | estándar 5 |                | 0     |
| Curtosis -0.36 |                | Curtosis       | -0.03      | Curtosis       | -0.49 |
| Coeficiente de |                | Coeficiente de |            | Coeficiente de |       |
| asimetría      | 0.39           | asimetría      | 0.54       | asimetría      | 0.47  |
| Mínimo         | 93             | Mínimo         | 17         | Mínimo         | 3     |
| Máximo         | 419            | Máximo         | 96         | Máximo         | 64    |
|                | 19,67          |                | 3,54       |                | 2,15  |
| Suma           | 0              | Suma           | 0          | Suma           | 2     |

Fuente: Elaboración propia. (2016).

En la variable cantidad de adultos se observa que la mayoría de reservas que presentaron No Show, estaban reservados para un solo adulto (como se observa en las sumas). La media para un solo adulto de 259 No Shows, mientras que para dos adultos y tres adultos se de 47 y 28 No Shows respectivamente. Haciendo los respectivos cálculos, se logra observar que los coeficientes para la cantidad de adultos (en los tres escenarios) son muy altas lo cual también hace referencia a que se está bajo unos datos con una alta dispersión. El coeficiente de asimetría muestra qué los datos también se encuentran sesgados a la derecha y que la

mayoría son valores bajos (posiblemente se tienen problemas de Outliers, lo cual se analizará más adelante).

Tabla 3. Valores descriptivos para la variable Cantidad de Niños

| CANTIDAD DE NIÑOS        |      |
|--------------------------|------|
| NIÑOS POR MES            |      |
| Media                    | 2    |
| Error típico             | 0.48 |
| Mediana                  | 0    |
| Moda                     | 0    |
| Desviación estándar      | 4.17 |
| Curtosis                 | 9.76 |
| Coeficiente de asimetría | 2.74 |
| Mínimo                   | 0    |
| Máximo                   | 24   |
| Suma                     | 188  |

Fuente: Elaboración propia. (2016).

Esta variable tiene una media de 2 niños por No Show. Su mediana es de cero y su moda es de cero, esto refleja que la presencia de niños en No Show sería considerado un dato atípico (hipótesis que corrobora el coeficiente de asimetría). El máximo es de 24 niños que presentaron fenómeno de No Show en un mes mientras que su valor mínimo es igual a la mediana, cero.

Tabla 4. Valores descriptivos para la variable Nacionalidad

| NO SHOW A PAR            | TIR DEI | TIPO DE NACIONALIDAD     |        |
|--------------------------|---------|--------------------------|--------|
| COLOMBIANO               |         | EXTRANJERO               |        |
| Media                    | 85      | Media                    | 249    |
| Error típico             | 2.94    | Error típico             | 9.03   |
| Mediana                  | 81      | Mediana                  | 237    |
| Moda                     | 70      | Moda                     | 292    |
| Desviación estándar      | 25.63   | Desviación estándar      | 78.75  |
| Curtosis                 | 0.01    | Curtosis                 | -0.14  |
| Coeficiente de asimetría | 0.36    | Coeficiente de asimetría | 0.53   |
| Mínimo                   | 30      | Mínimo                   | 97     |
| Máximo                   | 148     | Máximo                   | 437    |
| Suma                     | 6,468   | Suma                     | 18,894 |

Fuente: Elaboración propia. (2016)

Como se observa en la tabla 4, la mayoría de casos que se presentan de No Show son dados por personas de otras nacionalidades distintas a la colombiana. El promedio de las personas colombianas, es 85 No Shows en todos los periodos observados, mientras que el promedio de los extranjeros es de 249 No Shows. El coeficiente de variación de ambos es muy alto, lo cual también indica que se está sufriendo de valores atípicos para esta variable. Finalmente se observa el coeficiente de asimetría el cual muestra que para ambos casos la mayoría de los datos presenta valores bajos.

Tabla 5. Valores descriptivos para la variable Tipo de compra anticipada

| TIPO DE COMPRA ANTICIPADA |        |              |       |              |       |              |       |
|---------------------------|--------|--------------|-------|--------------|-------|--------------|-------|
| TIPO U                    | NO NO  | TIPO D       | OS    | TIPO TRES    |       | TIPO CUATRO  |       |
| Media                     | 223    | Media        | 62    | Media        | 34    | Media        | 14    |
| Error típico              | 7.20   | Error típico | 3.69  | Error típico | 2.52  | Error típico | 1.34  |
| Mediana                   | 218    | Mediana      | 56    | Mediana      | 31    | Mediana      | 13    |
| Moda                      | 225    | Moda         | 49    | Moda         | 17    | Moda         | 0     |
| Desviación                |        | Desviación   |       | Desviación   |       | Desviación   |       |
| estándar                  | 62.73  | estándar     | 32.13 | estándar     | 21.97 | estándar     | 11.72 |
| Curtosis                  | 0.30   | Curtosis     | 7.56  | Curtosis     | 2.09  | Curtosis     | 2.72  |
| Coeficiente               |        |              |       | Coeficiente  |       | Coeficiente  |       |
| de                        |        | Coeficiente  |       | de           |       | de           |       |
| asimetría                 | 0.68   | de asimetría | 1.94  | asimetría    | 1.23  | asimetría    | 1.31  |
| Mínimo                    | 107    | Mínimo       | 14    | Mínimo       | 2     | Mínimo       | 0     |
| Máximo                    | 388    | Máximo       | 225   | Máximo       | 117   | Máximo       | 62    |
| Suma                      | 16,942 | Suma         | 4,737 | Suma         | 2,590 | Suma         | 1,093 |

Fuente: Elaboración propia. (2016).

Observando la variable compra anticipada, se puede observar que la mayoría de casos se presentan en compras anticipadas tipo uno, lo cual indica que su periodo de anticipación no es mayor a 15 días (y por lo general se da el fenómeno No Show con más frecuencia). Seguido se ve que la compra anticipada tipo dos tomas más relevancia que los otros dos tipos restantes. Para el tipo uno se observa una media de 223 No Show para los periodos observados, mientras que una desviación estándar de 62.73. Para el tipo dos se observa una media de 62 No Shows y una desviación de 32.13. En el tipo 3 se ve una media de 3 y una desviación de 21.97. Finalmente, en la compra anticipada tipo cuatro, se observa

una media de 14 y una desviación de estándar de 11.72. Como dato curioso se puede ver que esta variable si no sufre de alta dispersión ya que si se realizan los calculas del coeficiente de variación, ninguno supera el 30%. Los coeficientes de asimetría también indican que las variables tienen un sesgo positivo y la mayoría de los valores son bajos.

Tabla 6. Valores descriptivos para la variable Tipo de habitación

| NO SHOW POR TIPO DE HABITACIÓN |       |              |       |              |       |              |       |
|--------------------------------|-------|--------------|-------|--------------|-------|--------------|-------|
| SUPERIOR EXECUT                |       | IVE BUSINESS |       | SS           | SUITE |              |       |
| Media                          | 189   | Media        | 57    | Media        | 26    | Media        | 61    |
| Error típico                   | 5.86  | Error típico | 2.66  | Error típico | 1.30  | Error típico | 2.62  |
| Mediana                        | 182   | Mediana      | 56    | Mediana      | 25    | Mediana      | 61    |
| Moda                           | 179   | Moda         | 57    | Moda         | 25    | Moda         | 43    |
| Desviación                     |       | Desviación   |       | Desviación   | 11.3  | Desviación   | 22.8  |
| estándar                       | 51.09 | estándar     | 23.20 | estándar     | 0     | estándar     | 0     |
| Curtosis                       | -0.36 | Curtosis     | -0.10 | Curtosis     | 0.21  | Curtosis     | -0.30 |
| Coeficiente                    |       | Coeficiente  |       |              |       |              |       |
| de                             |       | de           |       | Coeficiente  |       | Coeficiente  |       |
| asimetría                      | 0.30  | asimetría    | 0.59  | de asimetría | 0.65  | de asimetría | 0.39  |
| Mínimo                         | 64    | Mínimo       | 18    | Mínimo       | 9     | Mínimo       | 15    |
| Máximo                         | 299   | Máximo       | 118   | Máximo       | 62    | Máximo       | 119   |
|                                | 14,37 |              |       |              | 2,00  |              | 4,62  |
| Suma                           | 5     | Suma         | 4,352 | Suma         | 7     | Suma         | 8     |

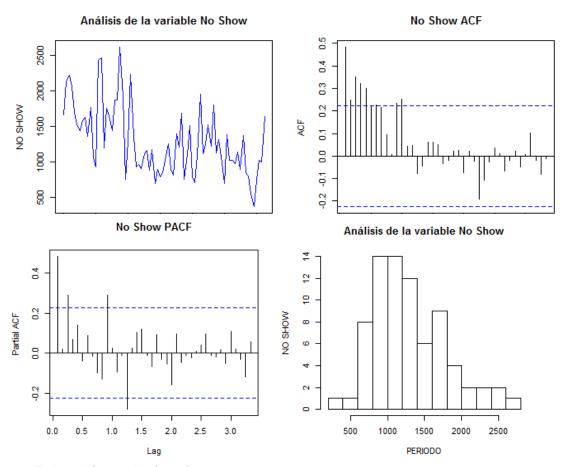
Fuente: Elaboración propia. (2016).

Tal como era de esperarse, la mayoría de No Shows se presenta en las habitaciones de menor costo. Para la habitación tipo superior, la media es de 189 No Shows mientras que su desviación de 51.09. Por otra parte, Executive presenta una media de 57, Business 26 y curiosamente el tipo de habitación Suite es la segunda más alta con una media de 61 No Shows y una desviación de 22.80. Todos los tipos de habitación poseen coeficientes de asimetría positivos lo cual evidencia la alta participación de valores bajos en todas las observaciones.

A continuación, se presenta una matriz de correlaciones de las variables para brindar al lector un primer indicio sobre las posibles relaciones que existen entra las variables. Cabe resaltar que algunos valores fueron omitidos debido a su carencia lógica:

Tabla 7. Correlación entre las variables

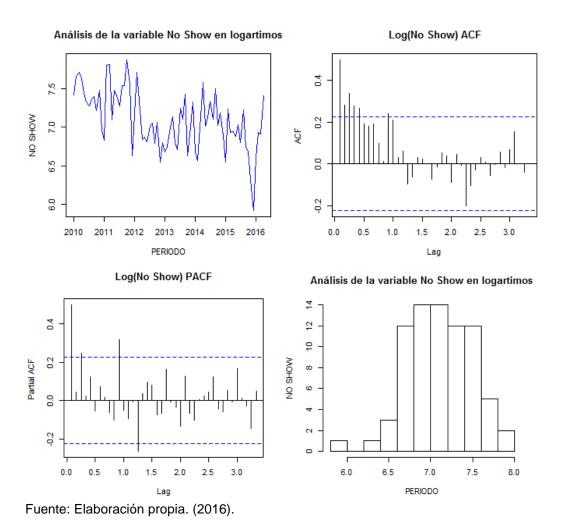
|            | NO_SHOW | 1 ADULTO | 2 ADULTOS | 3 ADULTOS | NIÑOS  | COLOMBIANO | EXTRANJERO | TIPO 4 | TIPO 2 | TIPO 3 | TIPO 1 | BUS    | EXEC  | SUITE | SUPERIOR |
|------------|---------|----------|-----------|-----------|--------|------------|------------|--------|--------|--------|--------|--------|-------|-------|----------|
| NO_SHOW    | 1.000   | 0.896    | 0.633     | 0.713     | 0.056  | 0.572      | 0.910      | 0.207  | 0.663  | 0.457  | 0.838  | 0.723  | 0.775 | 0.759 | 0.839    |
| 1 ADULTO   | 0.896   |          |           |           | 0.118  | 0.619      | 0.928      | 0.246  | 0.678  | 0.421  | 0.877  | 0.588  | 0.787 | 0.721 | 0.932    |
| 2 ADULTOS  | 0.633   |          | 1.000     |           | 0.120  | 0.391      | 0.650      | 0.223  | 0.323  | 0.460  | 0.608  | 0.706  | 0.563 | 0.644 | 0.500    |
| 3 ADULTOS  | 0.713   |          |           | 1.000     | 0.007  | 0.341      | 0.706      | 0.201  | 0.466  | 0.489  | 0.578  | 0.921  | 0.718 | 0.702 | 0.416    |
| NIÑOS      | 0.056   | 0.118    | 0.120     | 0.007     | 1.000  | 0.062      | 0.117      | 0.001  | 0.078  | 0.032  | 0.120  | -0.007 | 0.080 | 0.174 | 0.099    |
| COLOMBIANO | 0.572   | 0.619    | 0.391     | 0.341     | 0.062  | 1.000      |            | 0.290  | 0.427  | 0.339  | 0.514  | 0.383  | 0.480 | 0.281 | 0.684    |
| EXTRANJERO | 0.910   | 0.928    | 0.650     | 0.706     | 0.117  |            | 1.000      | 0.218  | 0.646  | 0.465  | 0.883  | 0.734  | 0.824 | 0.841 | 0.828    |
| TIPO 4     | 0.207   | 0.246    | 0.223     | 0.201     | 0.001  | 0.290      | 0.218      | 1.000  |        |        |        | 0.281  | 0.222 | 0.363 | 0.157    |
| TIPO 2     | 0.663   | 0.678    | 0.323     | 0.466     | 0.078  | 0.427      | 0.646      |        | 1.000  |        |        | 0.453  | 0.545 | 0.543 | 0.620    |
| TIPO 3     | 0.457   | 0.421    | 0.460     | 0.489     | 0.032  | 0.339      | 0.465      |        |        | 1.000  |        | 0.440  | 0.473 | 0.401 | 0.396    |
| TIPO 1     | 0.838   | 0.877    | 0.608     | 0.578     | 0.120  | 0.514      | 0.883      |        |        |        | 1.000  | 0.639  | 0.745 | 0.684 | 0.834    |
| BUS        | 0.723   | 0.588    | 0.706     | 0.921     | -0.007 | 0.383      | 0.734      | 0.281  | 0.453  | 0.440  | 0.639  | 1.000  | 0.773 | 0.686 | 0.445    |
| EXEC       | 0.775   | 0.787    | 0.563     | 0.718     | 0.080  | 0.480      | 0.824      | 0.222  | 0.545  | 0.473  | 0.745  | 0.773  | 1.000 | 0.629 | 0.605    |
| SUITE      | 0.759   | 0.721    | 0.644     | 0.702     | 0.174  | 0.281      | 0.841      | 0.363  | 0.543  | 0.401  | 0.684  | 0.686  | 0.629 | 1.000 | 0.553    |
| SUPERIOR   | 0.839   | 0.932    | 0.500     | 0.416     | 0.099  | 0.684      | 0.828      | 0.157  | 0.620  | 0.396  | 0.834  | 0.445  | 0.605 | 0.553 | 1.000    |


Superan el 0.8 Superan el 0.75

Fuente: Elaboración propia. (2016).

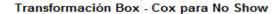
La tabla 7 permite clasificar todas las variables de manera que se logre identificar cuales podrían participar en un el modelo ARMAX (el cual consiste en incluir variables explicativas) de modo que se logre tener un comparativo entre los dos modelos que se han de realizar para este estudio. Las relaciones se clasificaron en dos: I) las variables que tienen una relación superior al 80%, las cuales se resaltan en un color verde y II) aquellas variables que tienen una relación superior al 75% e inferior al 80%. Estas se encuentran resaltadas en color amarillo.

### Generación del modelo ARMA


Para llevar a cabo el modelo es necesario graficar la serie, generar la función de autocorrelación, la función de autocorrelación parcial y un histograma de la variable No Show.

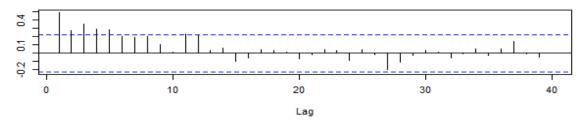


Fuente: Elaboración propia. (2016).

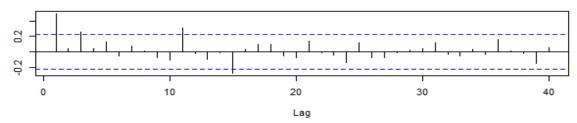

(Figura 5). Figura, ACF y PACF de la variable No Show

Como se puede apreciar en la figura 5, la serie de tiempo No Show presenta bastante volatilidad, por ende, es necesario realizar un suavizamiento de los datos con el fin de obtener un panorama menos volátil. Se realizan los logaritmos de la serie No Show y se vuelven a graficar (junto con la generación del ACF y PACF).




(Figura 6). Figura, ACF y PACF de la variable No Show en Logaritmos

Luego de transformar la serie No Show en logaritmos, se observa que persiste la volatilidad en los datos y por ello es necesario recurrir a una trasformación más radical, todo con el fin de lograr un suavizamiento adecuado de los datos. Para ello se recurre a la transformación Box – Cox con el fin de suavizar las observaciones de la variable No Show.






### ACF de Trans. No Show



PACF de Trans. No Show

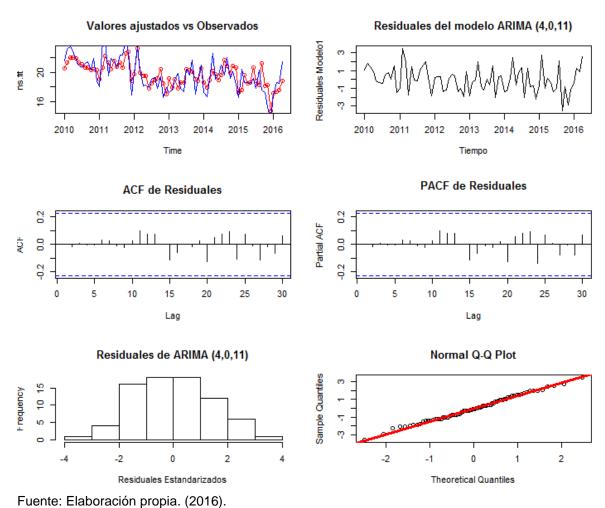


Fuente: Elaboración propia. (2016).

(Figura 7). Figura, ACF y PACF de la variable No Show luego de la Transformación Box – Cox

Como se percibe en la figura 7, los datos redujeron considerablemente su volatilidad y los datos ya presentan gráficamente una estacionariedad. Esto se debe corroborar a través del test de Dickey – Fuller para saber si serie de tiempo tiene un orden de integración d = 0, y por ende es estacionaria.

 $H0: \delta < 0$ ; la serie de tiempo no es estacionaria


Ha: δ = 0; La serie de tiempo es estacionaria

Esta prueba se realizó mediante el programa R y arrojo un *p*-valor de 0.01, lo cual con un nivel de significancia del 0.05 permite rechazar la hipótesis nula y afirmar que la serie de tiempo si es estacionaria. Acto seguido, se dispone a correr el modelo. Luego de un proceso iterativo guiado por la observación del ACF y PACF de la serie de tiempo con trasformación BOX – COX, se encontró que el modelo es un ARMA (4, 0,11). Algebraicamente este modelo se escribe de la siguiente manera:

$$Yt = \phi Yt - 1 + \dots + \phi pYt - p + et - \theta et - 1 \dots \theta qet - q$$
 (1.1)

# Ecuación 1. Descripción algebraica del modelo

A continuación, se presenta el modelo ARMA (4, 0,11)



(Figura 8). Ajuste del modelo ARMA (4, 0,11)

Cómo se puede apreciar en la figura de los valores ajustados vs los valores observados, el modelo presenta un ajuste adecuado (aunque con algunos puntos de discrepancia) lo cual hace que se considere un modelo idóneo para la explicación del proceso generador de datos. También se observa el ACF y el PACF los cuales revelan que todos los rezagos se encuentran dentro de las bandas de confianza de Bartlett evidenciado que no se presentan problemas de autocorrelación (hipótesis que será validada más adelante con las pruebas respectivas). También se observa el figura Q-Q plot el cual muestra la normalidad de los datos y logra reflejar junto con el histograma que los datos se distribuyen normalmente. Por tanto, se podría afirmar a priori (antes de realizar el diagnostico estadístico) que se está frente a un modelo de ruido blanco gaussiano.

Diagnósticos del modelo

Ahora se realizará la prueba de Ljung – Box para determinar si los rezagos no se encuentran correlacionados:

 $H0: \rho = 0$ ; Las observaciones no están correlacionadas.

 $Ha: \rho \neq 0$ ; Las observaciones están correlacionadas

Por medio del software se logró obtener el *p*-valor el cual dio como resultado 0.9983, el cual con un nivel de significancia del 0.05, arrojo la prueba en la zona de aceptación, indicando que las observaciones no están correlacionadas.

 $H0: \gamma = 0$ ; los errores se distribuyen normal

*Ha*:  $\gamma \neq 0$ ; *los errores no se distribuyen normal* 

Para la prueba de Shapiro – Wilk, se encontró un *p*-valor de 0.9807, lo cual con un nivel de significancia del 0.05 arrojó sobre la zona de aceptación indicando que los errores se distribuyen normalmente.

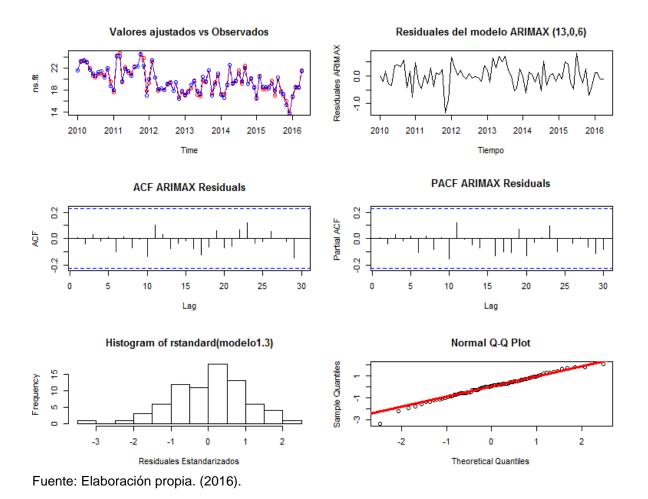
H0: JB = 0; los residuos se encuentran normalmente distribuidos

 $Ha: JB \neq 0$ ; los residuos no se encuentran normalmente distribuidos

Finalmente se obtuvo un *p*-valor de 0.8128 para la prueba de Jarque – Bera la cual arrojó sobre la zona de aceptación y por ende indicando que los residuos si están normalmente distribuidos y por ende si se está frente a un ruido blanco gaussiano.

Se logró observar que el modelo ARMA (4, 0, 11) se ajusta adecuadamente a los datos además de pasar todas las pruebas de diagnóstico indicando que si se está frente a un modelo de ruido blanco gaussiano. Pero en algunos puntos de la figura se percibe que existen discrepancias entre los valores ajustados y los valores observados. Por ende, es necesario recurrir a un modelo ARMAX<sup>1</sup> para determinar si algunas variables exógenas si tienen una participación significativa en el proceso generados de datos.

A continuación, se presenta un modelo tipo ARMAX con el fin de observar si los datos ajustados se lograr asimilar en mayor medida a los datos observados. Luego de realizar un proceso iterativo similar al del modelo ARMA, se logró establecer que la variable No Show es influenciado por nueve variables:


- 1 adulto (perteneciente a la cantidad de adultos)
- 2 adultos (perteneciente a la cantidad de adultos)
- Niños por mes
- Colombianos (pertenecientes a la nacionalidad)
- Extranjeros (pertenecientes a la nacionalidad)
- Tipo 2 (perteneciente a tipo de compra anticipada)
- Tipo 1 (perteneciente a tipo de compra anticipada)
- Executive (perteneciente al tipo de habitación)
- Superior (perteneciente al tipo de habitación)

Algebraicamente el modelo se escribiría de la siguiente manera:

$$Yt = \phi Yt - 1 + \dots + \phi pYt - p + et - \theta et - 1 \dots \theta qet - q + \beta 1 + \beta 2 + \beta 3 + \beta 4 + \beta 5 + \beta 6 + \beta 7 + \beta 8 + \beta 9$$
 (1.2)

A continuación, se presenta el modelo ARMAX (13 0,6)

<sup>&</sup>lt;sup>1</sup> Es un modelo de tipo ARMA pero el cual incluye variables exógenas. De ahí se deriva la X de su nombre.



(Figura 9). Ajuste del modelo ARMAX (13, 0,6)

En este modelo si se logra observar que el ajuste de los datos es mayor y sigue manteniendo sus cualidades de ruido blanco gaussiano. Se puede decir que este modelo también ajustaría de forma adecuada los datos y lograría dar una predicción asertiva. A continuación, se realiza los diagnósticos del modelo para saber si realmente es un ruido blanco gaussiano. Para este modelo las variables explicativas tuvieron una incidencia de la siguiente manera:

Tabla 8. Incidencia de las variables exógenas en la variable No Show

| CATEGORIA      | VARIABLE | INCIDENCIA |  |  |  |  |
|----------------|----------|------------|--|--|--|--|
| Cantidad de    | D1       | -0.276     |  |  |  |  |
| adultos        | D2       | -0.547     |  |  |  |  |
| Niños por mes  | NM       | 0.146      |  |  |  |  |
| Nacionalidad   | CL       | 0.727      |  |  |  |  |
| Nacionanuau    | EXT      | 0.686      |  |  |  |  |
| Tipo de compra | T2       | -0.073     |  |  |  |  |
| Tipo de compra | T1       | -0.095     |  |  |  |  |
| Tipo de        | EX       | -0.321     |  |  |  |  |
| habitación     | SUP      | -0.088     |  |  |  |  |

Fuente: Elaboración propia. (2016).

La tabla 8 representa cada una de las variables X que se encontraron que participaban en el modelo. Estos valores quieren decir que por ejemplo por cada unidad de la variable D1, la cantidad de No – Shows en un mes se reduce en 0.276 unidades de No Show. Observando la media de la variable D1 (explicada en el apartado del análisis descriptivo) se logra observar que su participación es considerable. Este razonamiento aplica para las demás variables.

# Diagnósticos del modelo

Ahora se realizará la prueba de Ljung – Box para determinar si los rezagos no se encuentran correlacionados:

 $H0: \rho = 0$ ; Las observaciones no están correlacionadas.

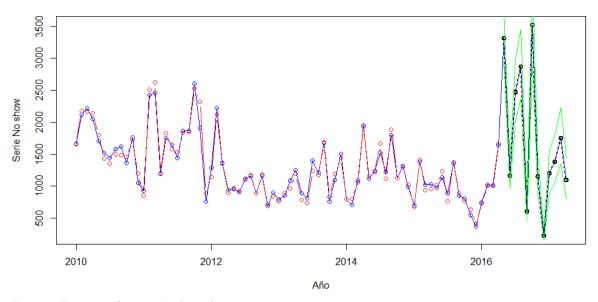
 $Ha: \rho \neq 0$ ; Las observaciones están correlacionadas

Por medio del software se logró obtener el *p*-valor el cual dio como resultado 0.9984, el cual con un nivel de significancia del 0.05, arrojo la prueba en la zona de aceptación, indicando que las observaciones no están correlacionadas.

 $H0: \gamma = 0$ ; los errores se distribuyen normal

*Ha*:  $\gamma \neq 0$ ; *los errores no se distribuyen normal* 

Para la prueba de Shapiro – Wilk, se encontró un *p*-valor de 0.4322, lo cual con un nivel de significancia del 0.05 arrojó sobre la zona de aceptación indicando que los errores se distribuyen normalmente.


H0: JB = 0; los residuos se encuentran normalmente distribuidos

Ha:  $IB \neq 0$ ; los residuos no se encuentran normalmente distribuidos

Finalmente se obtuvo un *p*-valor de 0.1377 para la prueba de Jarque – Bera la cual arrojó sobre la zona de aceptación y por ende indicando que los residuos si están normalmente distribuidos y por ende si se está frente a un ruido blanco gaussiano.

Predicción a partir del mejor modelo

Al realizar cada uno de los modelos, estos arrojaron los estadísticos de comparación AIC, BIC y el sigma^2 estimado (volatilidad) los cuales permitieron escoger el mejor modelo. El AIC del ARMA (4,0,11) fue de 314.79 mientras que el del ARMAX (13,0,6) fue de 165.82; por lo tanto se escogió el ARMAX (13,0,6) para realizar la predicción del modelo (dado que entre menor sea el valor del AIC, mejor es el ajuste del modelo).



Fuente: Elaboración propia. (2016).

(Figura 9). Predicción de los valores No Show para los próximos 12 meses.

Como se logra observar en la figura 9, los valores ajustados (línea roja) se ajustan adecuadamente a los valores observados (línea azul) y por ende se considera que este es el mejor modelo para realizar la proyección a 12 meses (línea negra). Dado que la serie No Show presenta una fuerte volatilidad, se otorgaron unos límites de confianza (líneas verdes) razonables para que el modelo pueda fluctuar de forma acorde a su comportamiento y aun así el valor esperado quede dentro lo esperado.

# **CAPITULO 6. Conclusiones y recomendaciones**

Para el análisis de la serie de tiempo de No Show, se recurrieron a dos modelos: un ARMA (4, 0, 11) y un ARMAX (13, 0, 6), los cuales arrojaron parámetros bastante significativos Y después de ser sometidos a unas pruebas estadísticas confirmaron su veracidad. Quiere decir que si se está frente a dos modelos que pueden brindar una interpretación a la serie de tiempo y perfectamente podrían generar un pronóstico. ¿Pero cuál modelo es mejor? Para responder a esta pregunta, se recurren a tres estadísticos relevante en la generación de un modelo; 1) el AIC (Criterio de Información de Akaike) el cual se considera una medida de calidad de un modelo estadístico. 2 el BIC Criterio de Información de Bayesiano) que se comporta muy similar al AIC pero castiga más severamente la inclusión de mayor número de parámetros y 3) el  $\sigma^2$  (Sigma cuadrado) el cual representa la volatilidad que podría tener el modelo. Se realizó un comparativo entre los dos modelos y se encontró qué:

|           | ARMA     |               |
|-----------|----------|---------------|
|           | (4,0,11) | ARMAX(13,0,6) |
| AIC       | 314.79   | 165.82        |
| BIC       | 352.07   | 233.4         |
| σ^2       |          |               |
| Estimated | 1.964    | 0.1542        |

Que el modelo ARMAX posee unos valores más pequeños para estos estadísticos (lo cual caracteriza un buen modelo) y por ende se concluye que el modelo ARMAX tiene una mejor capacidad de describir el comportamiento de las series de tiempo No Show. Por tanto a la hora de realizar un pronóstico se recomienda utilizar este modelo.

### REFERENCIAS

- Arciniegas, M. E. A. T. B. H. P. R. M. E. R. R. C. I. S. (2014). Plan Sectorial de Turismo 2014 2018 "Turismo para la construcción de la paz," 59. Retrieved from www.mincit.gov.co/minturismo/descargar.php?id=71713
- Bravo, A., & Rincon, D. (2015). Estudio de Competitividad en el Sector Turismo en Colombia. *Statewide Agricultural Land Use Baseline 2015*, *1*, 1–99. http://doi.org/10.1017/CBO9781107415324.004
- Breve, M. A., & Perron, P. (2004). Curso de Predicción Económica y Empresarial, 1–4.
- Centro de ayuda de Barceló Hoteles & Resorts: ¿Qué es el No Show y desde que horas se aplica? [En linea]. Barceló Hoteles & Resorts. [Fecha de Consulta: 03 de mayo de 2016]. Disponible desde internet: http://barcelo.custhelp.com/app/answers/detail/a\_id/30/~/%C2%BFqu%C3%A 9-es-el-%E2%80%9Cno-show%E2%80%9D-y-desde-qu%C3%A9-hora-se-aplica%3F
- Colombia, M. (2015). Boletín semestral de estadísticas Migracion Colombia 2015, 24–36. Retrieved from racioncolombia.gov.co
- Revista Dinero (2016), Inversión extranjera en Colombia, la más baja en 5 años. Revista Dinero. Recuperado de: http://www.dinero.com/economia/articulo/inversion-extranjera-tercer-trimestre-2015/217664
- Glosario poraqui.net: No show [En linea]. Poraqui.net Portal de hoteleria y turismo. [Fecha de consulta: 03 de mayo de 2016]. Disponible desde internet: http://www.poraqui.net/glosario/no-show
- Gujarati, D. N., & Porter, D. C. (2006). *Econometria. McGraw-Hill*. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Econometria #6
- Mauricio, J. A. (2004). Análisis de series temporales, 1–8.
- Oficina de estudios económicos. (2015). Oficina de Estudios Económicos

Información de inversión extranjera (Balanza cambiaria - Banco de la República) 11 de diciembre de 2015. *Ministerio de Comercio - Informes de Turismo*, 1–4. Retrieved from http://www.mincit.gov.co/publicaciones.php?id=16590

- Oficina de estudios económicos. (2016). Oficina de Estudios Económicos Información de inversión extranjera (Balanza cambiaria Banco de la República) 31 de marzo de 2016. *Ministerio de Comercio Informes de Turismo*, 1–4. Retrieved from http://www.mincit.gov.co/publicaciones.php?id=16590
- Proexport. (2014). Reporte Trimestral de Inversión Extranjera Directa en Colombia a 2014, 1–18. Retrieved from http://www.procolombia.co/sites/default/files/reporte\_de\_inversion\_-\_2014.pdf
- Villavicencio, J. (2010). Introducción a Series de Tiempo. *Metodología de Series de Tiempo*, 4.
- Wooldridge, J. M. (2009). Intruducción a la econometría.
- Zuñiga-collazos, A. (2016). Análisis del Sector Turístico en Colombia 2015. Revista Espacios, (October 2015), 19. http://doi.org/10.13140/RG.2.1.3440.4561

# **APÉNDICE**

Apéndice A. Series de tiempo según el modelo No Show.

| AÑO MES         | NO_SHOW | UN ADULTO | DOS ADULTOS | TRES ADULTOS | NIÑOS POR MES | COLOMBIANO | EXTRANJERO | TIPO CUATRO | TIPO DOS | TIPO TRES | TIPO UNO | BUSINESS | EXECUTIVE | SUITE | SUPERIOR |
|-----------------|---------|-----------|-------------|--------------|---------------|------------|------------|-------------|----------|-----------|----------|----------|-----------|-------|----------|
| 2010 ENERO      | 1665    | 360       | 34          | 1            | 16            | 0 96       | 31         | 1 2         | 0 69     | 38        | 3 283    | 16       | 5 55      | 5 64  | 275      |
| 2010 FEBRERO    | 2121    | 388       | 52          | ı            | 47            | 0 133      | 35.        | 5 1         | 1 225    | 17        | 7 234    | 39       | 79        | 9 70  | 299      |
| 2010 MARZO      | 2215    | 392       | 65          | 4            | 47            | 7 10       | 39         | )           | 8 98     | 35        | 363      | 48       | 97        | 7 82  | 277      |
| 2010 ABRIL      | 2054    | 409       | 66          | 4            | 47 1          | 4 110      | 41         | 2           | 0 120    | 44        | 358      | 43       | 118       | 91    | 270      |
| 2010 MAYO       | 1702    | 325       | 58          | 4            | 46 1          | 0 83       | 34         | 5           | 8 93     | 64        | 1 264    | 34       | 66        | 5 93  | 236      |
| 2010 JUNIO      | 1519    | 318       | 43          | - 7          | 25            | 0 86       | 30         | 1           | 8 78     | 14        | 276      | 27       | 83        | 3 67  | 209      |
| 2010 JULIO      | 1440    | 258       | 35          |              | 28            | 0 59       | 26         |             | 7 57     | 43        | 3 214    | 25       | 56        | 62    | 178      |
| 2010 AGOSTO     | 1581    | 361       | 28          | 1            | 16            | 0 113      | 29         | 2           | 1 63     | 42        | 2 299    | 25       | 89        | 9 46  | 245      |
| 2010 SEPTIEMBRE | 1623    | 347       | 32          | :            | 10            | 4 107      | 28         | !           | 9 111    | . 29      | 240      | 12       | . 75      | 5 38  | 264      |
| 2010 OCTUBRE    | 1361    | 302       | 29          | 3            | 32            | 4 7:       | . 29       | 2 1         | 4 85     | 31        | 233      | 23       | 57        | 7 102 | 181      |
| 2010 NOVIEMBRE  | 1767    | 355       | 55          |              | 40            | 4 90       | 36         | 6.          | 2 86     | 28        | 3 274    | 38       | 95        | 5 101 | 216      |
| 2010 DICIEMBRE  | 1055    | 263       | 58          | 1            | 11 1          | 0 76       | 25         | 2           | 7 84     | . 8       | 213      | 11       | . 33      | 82    | 206      |
| 2011 ENERO      | 927     | 203       | 32          | 1            | 16            | 0 30       | 22         |             | 9 28     | 14        | 200      | 17       | 38        | 67    | 129      |
| 2011 FEBRERO    | 2428    | 385       | 82          |              | 50            | 0 115      | 40         | 2 1         | 8 88     | 23        | 388      | 46       | 75        | 5 119 | 277      |
| 2011 MARZO      | 2464    | 409       | 71          | (            | 64            | 0 10       | 43         | 7 1         | 0 131    | . 117     | 7 286    | 45       | 108       | 3 101 | 290      |
| 2011 ABRIL      | 1202    | 256       | 52          |              | 38            | 5 9:       | . 25       | 5 2         | 5 52     | 53        | 216      | 37       | 68        | 8 62  | 179      |
| 2011 MAYO       | 1757    | 288       | 76          |              | 59            | 2 78       | 34         | 5 1         | 7 54     | 39        | 313      | 49       | 67        | 7 93  | 214      |
| 2011 JUNIO      | 1648    | 322       | 44          | 2            | 29            | 1 86       | 30         | 3           | 4 80     | 43        | 238      | 37       | 68        | 94    | 196      |
| 2011 JULIO      | 1440    | 230       | 51          | ı            | 43            | 3 70       | 25         | 1 2         | 4 101    | . 28      | 3 171    | 30       | 58        | 80    | 156      |
| 2011 AGOSTO     | 1866    | 332       | 58          |              | 49            | 0 103      | 33         | 5 1         | 5 76     | 38        | 310      | 32       | . 88      | 95    | 224      |
| 2011 SEPTIEMBRE | 1867    | 321       | 52          |              | 44            | 4 109      | 30         | 3 2         | 7 38     | 77        | 275      | 35       | 5 78      | 8 65  | 239      |
| 2011 OCTUBRE    | 2611    | 409       | 79          | į            | 55            | 0 126      | 41         | 2           | 9 115    | 29        | 370      | 62       | . 116     | 5 97  | 268      |
| 2011 NOVIEMBRE  | 1914    | 419       | 61          |              | 46            | 4 99       | 43         | . 3         | 1 95     | 45        | 355      | 50       | 95        | 5 110 | 271      |
| 2011 DICIEMBRE  | 756     | 229       | 47          | :            | 15            | 7 10       | 18         | 1           | 3 38     | 7         | 233      | 10       | 33        | 3 63  | 185      |
| 2012 ENERO      | 1291    | 211       | 47          |              | 33            | 0 67       | 22         | 1 1         | 3 49     | 35        | 194      | 30       | ) 68      | 8 49  | 144      |
| 2012 FEBRERO    | 2228    | 319       | 67          |              | 41            | 1 70       | 35         | 1           | 2 35     | 34        | 356      | 32       | . 64      | 4 81  | 250      |
| 2012 MARZO      | 1365    | 319       | 39          | 2            | 21            | 6 133      | 24         | 5 2         | 8 78     | 39        | 234      | 25       | 98        | 8 64  | 192      |
| 2012 ABRIL      | 935     | 175       | 37          | 2            | 25            | 2 66       | 17         |             | 0 58     | 26        | 153      | 21       | . 40      | 39    | 137      |
| 2012 MAYO       | 963     | 245       | 31          | 2            | 20            | 0 63       | 23         | 3 1         | 0 74     | . 9       | 203      | 24       | 34        | 4 71  | 167      |
| 2012 JUNIO      | 910     | 228       | 44          | 2            | 27            | 2 68       | 23         |             | 3 49     | 17        | 7 230    | 28       | 51        | 1 47  | 173      |
| 2012 JULIO      | 1114    | 240       | 34          | :            | 12            | 0 75       | 21         |             | 2 28     | 31        | 225      | 16       | 43        | 39    | 188      |
| 2012 AGOSTO     | 1157    | 237       | 55          | :            | 13            | 4 67       | 24         | 3           | 1 74     | - 38      | 3 192    | 15       | 24        | 4 64  | 202      |
| 2012 SEPTIEMBRE | 888     | 214       | 43          | 7            | 25            | 0 84       | 19         | 3           | 4 43     | 10        | 225      | 19       | 33        | 3 51  | 179      |
| 2012 OCTUBRE    | 1169    | 257       | 37          | :            | 18            | 0 98       | 21         |             | 9 44     | 67        | 7 192    | 14       | 51        | 1 47  | 200      |
| 2012 NOVIEMBRE  | 694     | 200       | 35          | :            | 15            | 0 7.       | 17.        | 3 1         | 6 41     | . 17      | 176      | 21       | . 47      | 7 35  | 147      |
| 2012 DICIEMBRE  | 900     | 219       | 37          |              | 22            | 7 93       | 18         | 5 1         | 7 20     | 17        | 224      | 25       | 56        | 5 43  | 154      |
| 2013 ENERO      | 796     | 154       | 20          | :            | 11            | 0 3:       | . 15       | 1           | 0 59     | 9         | 117      | 14       | 30        | 0 40  | 101      |
| 2013 FEBRERO    | 855     | 200       | 31          | :            | 15            | 3 66       | 18         | )           | 3 36     | 20        | 187      | 16       | 33        | 3 43  | 154      |
| 2013 MARZO      | 1087    | 240       | 29          | :            | 10            | 2 60       | 21         | )           | 6 72     | 11        | 190      | 9        | 26        | 5 28  | 216      |
| 2013 ABRIL      | 1253    | 265       | 37          |              | 20            | 0 55       | 26         | 1           | 8 54     | 27        | 233      | 23       | 59        | 9 62  | 178      |
| 2013 MAYO       | 893     | 211       | 24          |              | 15            | 3 60       | 19         | )           | 1 57     | 33        | 159      | 16       | 36        | 5 43  | 155      |
| 2013 JUNIO      | 815     | 157       | 37          | 7            | 21            | 0 45       | 17         | )           | 0 32     | 17        | 7 166    | 14       | 35        | 5 34  | 132      |
| 2013 JULIO      | 1400    | 277       | 46          | - 2          | 20            | 1 69       | 27         | 3 1         | 2 70     | 16        | 245      | 17       | 64        | 4 52  | 210      |
| 2013 AGOSTO     | 1213    | 252       | 51          |              | 30 2          | 4 50       | 28         | 3 1         | 0 43     | 55        | 225      | 25       | 56        | 5 73  | 179      |
| 2013 SEPTIEMBRE | 1681    | 378       | 49          | :            | 32            | 0 122      | . 33       | ,           | 4 85     | 54        | 316      | 28       | 3 78      | 8 63  | 290      |
| 2013 OCTUBRE    | 757     | 242       | 27          |              | 22            | 0 100      | 18         | 3 2         | 1 46     | 8         | 216      | 18       | 3 45      | 5 36  |          |
| 2013 NOVIEMBRE  | 1103    | 258       | 40          | :            | 35            | 0 94       | 23         | 9 4         | 2 59     | 51        | 181      | 28       | 57        | 7 60  |          |
| 2013 DICIEMBRE  | 1511    | 317       | 45          |              |               | 4 145      | 23         | 2 1         | 2 53     | 45        | 267      | 15       | 41        | 1 46  |          |

| 2014 ENERO                  | 791  | 160 | 18 | 11 | 0   | 72  | 117 | 3  | 27  | 10 | 149 | 13 | 23 | 32  | 121 |
|-----------------------------|------|-----|----|----|-----|-----|-----|----|-----|----|-----|----|----|-----|-----|
| 2014 EINERO<br>2014 FEBRERO | 791  | 187 | 30 | 25 | 0   | 68  | 174 | 0  | 34  | 38 | 170 | 25 | 40 | 50  | 127 |
|                             |      | -   |    | -  | 4   |     |     | -  |     |    | 229 |    | -  |     |     |
| 2014 MARZO                  | 1092 | 228 | 71 | 32 | - ' | 90  | 241 | 19 | 50  | 33 |     | 35 | 49 | 56  | 191 |
| 2014 ABRIL                  | 1951 | 305 | 62 | 34 | 0   | 113 | 288 | 21 | 97  | 63 | 220 | 31 | 53 | 100 | 217 |
| 2014 MAYO                   | 1114 | 246 | 44 | 34 | 0   | 77  | 247 | 2  | 49  | 38 | 235 | 30 | 70 | 65  | 159 |
| 2014 JUNIO                  | 1243 | 229 | 34 | 30 | 0   | 121 | 172 | 21 | 64  | 15 | 193 | 26 | 55 | 48  | 164 |
| 2014 JULIO                  | 1526 | 255 | 59 | 29 | 0   | 148 | 195 | 14 | 49  | 55 | 225 | 24 | 37 | 49  | 233 |
| 2014 AGOSTO                 | 1219 | 225 | 70 | 44 | 0   | 79  | 260 | 5  | 102 | 42 | 190 | 33 | 76 | 81  | 149 |
| 2014 SEPTIEMBRE             | 1796 | 274 | 58 | 42 | 9   | 143 | 231 | 12 | 99  | 31 | 232 | 40 | 57 | 66  | 211 |
| 2014 OCTUBRE                | 1125 | 207 | 73 | 38 | 0   | 91  | 227 | 32 | 33  | 42 | 211 | 36 | 44 | 56  | 182 |
| 2014 NOVIEMBRE              | 1319 | 248 | 63 | 50 | 0   | 113 | 248 | 16 | 39  | 83 | 223 | 45 | 89 | 60  | 167 |
| 2014 DICIEMBRE              | 986  | 193 | 43 | 20 | 8   | 77  | 179 | 15 | 16  | 14 | 211 | 17 | 51 | 54  | 134 |
| 2015 ENERO                  | 696  | 158 | 17 | 14 | 0   | 70  | 119 | 29 | 28  | 17 | 115 | 12 | 24 | 23  | 130 |
| 2015 FEBRERO                | 1382 | 237 | 51 | 47 | 0   | 65  | 270 | 15 | 49  | 66 | 205 | 40 | 64 | 66  | 165 |
| 2015 MARZO                  | 1022 | 221 | 67 | 26 | 2   | 79  | 235 | 11 | 72  | 58 | 173 | 23 | 55 | 63  | 173 |
| 2015 ABRIL                  | 1028 | 198 | 34 | 25 | 0   | 77  | 180 | 20 | 72  | 19 | 146 | 25 | 46 | 41  | 145 |
| 2015 MAYO                   | 972  | 210 | 44 | 16 | 15  | 89  | 181 | 15 | 60  | 30 | 165 | 16 | 45 | 58  | 151 |
| 2015 JUNIO                  | 1137 | 263 | 31 | 14 | 2   | 90  | 218 | 44 | 59  | 70 | 135 | 19 | 30 | 75  | 184 |
| 2015 JULIO                  | 894  | 214 | 21 | 16 | 4   | 86  | 165 | 5  | 50  | 22 | 174 | 19 | 37 | 26  | 169 |
| 2015 AGOSTO                 | 1372 | 246 | 65 | 28 | 0   | 80  | 259 | 32 | 55  | 12 | 240 | 26 | 52 | 74  | 187 |
| 2015 SEPTIEMBRE             | 848  | 220 | 36 | 25 | 0   | 58  | 223 | 21 | 41  | 20 | 199 | 26 | 57 | 57  | 141 |
| 2015 OCTUBRE                | 806  | 150 | 44 | 25 | 0   | 56  | 163 | 4  | 31  | 49 | 135 | 21 | 52 | 43  | 103 |
| 2015 NOVIEMBRE              | 550  | 93  | 28 | 32 | 0   | 36  | 117 | 6  | 30  | 10 | 107 | 27 | 27 | 35  | 64  |
| 2015 DICIEMBRE              | 372  | 153 | 38 | 3  | 0   | 63  | 131 | 4  | 14  | 14 | 162 | 9  | 18 | 15  | 152 |
| 2016 ENERO                  | 744  | 133 | 39 | 7  | 4   | 82  | 97  | 19 | 27  | 2  | 131 | 9  | 22 | 18  | 130 |
| 2016 FEBRERO                | 1020 | 164 | 60 | 36 | 2   | 70  | 190 | 8  | 54  | 20 | 178 | 31 | 63 | 43  | 123 |
| 2016 MARZO                  | 1005 | 240 | 42 | 24 | 0   | 74  | 232 | 16 | 69  | 29 | 192 | 28 | 61 | 45  | 172 |
| 2016 ABRIL                  | 1643 | 317 | 96 | 34 | 0   | 107 | 340 | 23 | 43  | 96 | 285 | 37 | 91 | 75  | 244 |

Fuente: Elaboración propia. (2016).