Diseño herramienta de proyección holográfica para la visualización del cerebro humano, orientado a la identificación de glioblastomas

Jorge Nicolás Dávila Gómez

FUNDACIÓN UNIVERSITARIA LOS LIBERTADORES
FACULTAD DE INGENIERÍA Y CIENCIAS BÁSICAS
PROGRAMA INGENIERÍA ELECTRÓNICA
BOGOTA D.C.
2019
Diseño herramienta de proyección holográfica para la visualización del cerebro humano, orientado a la identificación de glioblastomas

Jorge Nicolás Dávila Gómez

Trabajo de grado presentado como requisito parcial para optar al título de Ingeniero Electrónico.

Director
Ing. Nelson Eduardo Lozano Espinoza
Msc

FUNDACIÓN UNIVERSITARIA LOS LIBERTADORES
FACULTAD DE INGENIERÍA Y CIENCIAS BÁSICAS
PROGRAMA INGENIERÍA ELECTRÓNICA
BOGOTA D.C.
2019
NOTAS DE ACEPTACIÓN

Firma del Presidente del jurado

Firma Jurado

Firma Jurado

Bogotá D. C., Diciembre de 2019
AGRADECIMIENTOS

Deseo agradecer en primer lugar a Dios por haberme permitido realizar este Trabajo de Grado y culminar exitosamente el mismo.

También agradezco a mis padres y hermanos por el apoyo incondicional, a mis amigos, compañeros y cercanos por la ayuda brindada durante el proceso de desarrollo de este Trabajo. De igual forma le quiero expresar mi gratitud al Ingeniero Nelson Eduardo Lozano Espinoza, quien ha sido una valiosa guía a lo largo de este proceso y me brinda su conocimiento como un apoyo y orientación, a su vez le agradezco por alentarme a seguir fuerte en mi proceso de aprendizaje.
CONTENIDO

INTRODUCCIÓN .. 10

1. ESTADO DEL ARTE ... 13
 1.1. Documentación .. 13
 1.2. Normatividad ... 14
 1.3. Antecedentes ... 15
 1.3.1. Antecedentes de holografía 15
 1.3.1.1. Proyector perspecta 15
 1.3.1.2. Holografía sónica 16
 1.3.1.3. Holografía proyectada en una ventana de vapor de agua .. 17
 1.3.1.4. Hologramas de voxiebox 19
 1.3.1.5. Hologramas de seguridad en tarjetas de crédito .. 19
 1.3.1.6. Hologramas artísticos y arquitectónicos 20
 1.3.2. Antecedentes imágenes 3D en la medicina 21
 1.3.2.1. TC tomografía computarizada 22
 1.3.2.2. IRM imágenes por resonancia magnética 22
 1.3.2.3. Ecografías cerebrales 3D 24
 1.3.2.4. EEG Electroencefalograma 3D 25
 1.3.2.5. PET Tomografía 3D con emisión de positrones 25
 1.3.3. Estadísticas tumores 27

2. PROBLEMA ... 34

3. OBJETIVOS .. 35
 3.1. Objetivo general .. 35
 3.2. Objetivos específicos ... 35

4. MARCO TEÓRICO .. 36
 4.1. Holografía ... 36
4.2. Propiedades ondulatorias de la luz .. 38
4.3. Óptica geométrica ... 39
4.4. Estereoscopia ... 46
4.5. Pantallas holográficas o Display holográfico 49
4.6. Sistemas de control ... 49
4.6.1. Control digital ... 50
4.7. Motores DC ... 50
4.8. Tumores ... 52
4.8.1. Definición tumor cerebral ... 52
4.8.2. Causas ... 52
4.8.3. Glioblastomas ... 53

5. PROCESO DE SELECCIÓN TIPO DE HOLOGRAFÍA 54

6. PROCESO DE SELECCIÓN Y DISEÑO DISPLAY HOLOGRÁFI-
CO ... 60

7. PROCESO DE DISEÑO BASE DISPLAY HOLOGRÁFI-
CO ... 63
7.1. Condición 1 ... 63
7.2. Condición 2 ... 65
7.3. Condición 3 ... 67

8. CONCLUSIONES ... 75

9. RECOMENDACIONES .. 76

10. REFERENCIAS ... 80
LISTA DE FIGURAS

1. Proyector volumétrico perspecta .. 16
2. Funcionamiento holografía sónica .. 17
3. Aplicación de la holografía sónica .. 17
4. Dispositivo para generar hologramas en una ventana de vapor de agua . 18
5. Aplicaciones de la holografía proyectada en una ventana de vapor de agua . 18
6. Proyector de imágenes holográficas de Voxiebox de voxon 19
7. Hologramas de seguridad en tarjetas de crédito 20
8. Holograma museo MIT ... 21
9. Examen tomografía computarizada cerebral 22
10. Examen resonancia magnética cerebral ... 23
11. Ecografía cerebral ... 24
12. Electroencefalograma computarizado 3D .. 25
13. Tomografía 3D con emisión de positrones 26
14. Distribución de la población estudiada en la clinica el bosque separada por género ... 29
15. Distribución de los tumores en el género femenino 30
16. Distribución de los tumores en el género masculino 30
17. Distribución de los tumores en población pediátrica 31
18. Distribución de los tumores en adultos mayores 31
19. Distribución de los pacientes con gliomas por género 33
20. Distribución de los pacientes con gliomas según grado histológico 33
21. Visualización de un Pixel y su comparación con un Voxel 37
22. Funcionamiento de hologramas de reflexión 38
23. Espectro de ondas electromagnéticas junto con el espectro visible por el ojo humano ... 39
24. Imagen funcionamiento de la reflexión de la luz 40
25. Imagen Reflexión especular ocasionada por superficie pulimentada o lisa. 41
26. Imagen Reflexión difusa ocasionada por superficie rugosa 41
27. Imagen funcionamiento de la Refracción de la luz 42
28. Interferencia constructiva y destructiva ... 44
29. Profundidad de campo ... 45
30. Apertura de diferentes diafragmas y su nitidez de imagen 46
31. Diplopía fisiológica ... 48
32. Ilustración Paralaje por movimiento .. 48
33. Esquema sistema de control básico .. 49
34. Motor DC en configuración compuesta .. 51
35. Grafica configuraciones de los devanados en un motor DC 52
36. Efecto fantasma de pepper .. 54
37. Modelo de funcionamiento de proyección de imágenes aplicado a una sola cara del display ... 55
38. Principio funcionamiento reflexión de la luz 56
39. Modelo de funcionamiento proyección objetos con respecto al principio de reflexión Efecto fantasma de pepper ... 59
40. Imagen display holográfico propuesto .. 61
41. Vista lateral base display holográfico propuesto para cumplir condición 1 de diseño ... 64
42. Vista superior base display holográfico propuesto para cumplir condición 1 de diseño ... 64
43. Vista lateral base del display volumétrico con la implementacion de las tablas a los costados y en el suelo .. 65
44. Vista superior base metálica junto con la válvula a la que se aseguró a la pirámide ... 66
45. Vista lateral base metálica junto con la válvula a la que se aseguró a la pirámide 66
46. Balinera implementada en el proyecto ... 68
47. Diseño funcionamiento mecánico con piezas ampliadas (Piezas en dimensiones no exactas) ... 69
48. Vista lateral y superior diseño base para display holográfico, con implementación de caja para ubicación circuitería 70
49. Secuencia normal de activación para motores paso a paso 71
50. Diagrama sistema de control para realizar proyecciones holográficas, bajo las condiciones propuestas. .. 72
51. Correa de distribución .. 72
52. Configuración interna Driver ULN2003 73
53. Simulación realizada en Multisim 14 de circuito Darlington interno del ULN2003 con entrada de 5v simulando pin del Arduino UNO .. 74
54. Diagrama montaje para activación del motor paso a paso. 74
LISTA DE TABLAS

1. Distribución de los Tumores cerebrales en los pacientes estudiados en la clínica el Bosque entre Agosto 1978 hasta Agosto 2008. 28
2. Rango de edad de pacientes con tumor cerebral, Hospital Universitario San Jorge, Pereira, Colombia, 2008-2011. ... 32
3. Índice de refracción de los materiales ... 43
4. Condiciones de los criterios de cumplimiento del display a seleccionar 61
5. Características técnicas motor SUNHOKEY (SL42STH48-1504A) 77
INTRODUCCIÓN

El presente trabajo de grado consistió en el desarrollo y el estudio de la propuesta técnica para planear el sistema de proyección de hologramas, para el enfoque en la visualización de glioblastomas en el cerebro humano, con la finalidad de luego ser construido e implementado en la Fundación Universitaria Los Libertadores, como una herramienta competente en el ámbito médico que brinde una forma de visualizar el cerebro humano distinta a las existentes, para poder ser ofrecida como una opción que facilita el estudio de los glioblastomas y que busca brindar una ayuda médica para este tipo de afección que presentan varios pacientes con tumores cerebrales.

La metodología empleada en el desarrollo del presente documento de grado, se fundamenta en la realización de la consulta analítica de la documentación, tipos de proyección realizados previamente y el estudio de la medicina enfocada en los glioblastomas, cuya información fue sustraída de diferentes artículos científicos de desarrollo de herramientas holográficas y en el estudio médico artículos realizados por centros médicos, facultades de la medicina de diferentes universidades y estudios globales de la afección. De igual manera se estudiaron proyectos relacionados con la temática dada, de forma satisfactoria tomados como guía en el desarrollo y la mejora del diseño de la herramienta, a los cuales se pudo tener acceso y están relacionados en la sección de referencias de este documento.

Con el fin de tener un marco referencial que sirviera de contexto para el objetivo principal de este trabajo de grado, en primer lugar, se formulo el problema a resolver, y con base a él se plantearon los criterios que sirvieron para poder determinar las alternativas de solución al desarrollo del dispositivo de proyección de hologramas.

Luego se identificará la necesidad de la creación del diseño de esta herramienta, con la construcción del marco referencial apropiado que concluyó con la selección del tipo de proyección a implementar en el diseño, identificando la necesidad de brindar una herramienta que permita una visualización de estudios de tumores cerebrales diferente a las establecidas en la actualidad. Dentro de la información consultada, se documentaron los conceptos teóricos que influyen en la herramienta y características de los elementos
electrónicos que hacen parte del desarrollo de esta.

A partir de la base teórica mencionada anteriormente, se desarrolló un plan de diseño de la herramienta teniendo en cuenta diferentes criterios de selección y ponderación de estos, para permitir el desarrollo óptimo del dispositivo que se quiere brindar por medio de este diseño, a su vez buscando cumplir con la base del grupo de investigación “sistemas integrados y complejos para el reconocimiento de patrones mediante procesamiento digital de imágenes” que es brindar por medio de la electrónica brindar herramientas que tenga un impacto social, a su vez se verificó la normatividad que permite o limita el desarrollo de este diseño. Luego de seleccionado el tipo de proyección, el display holográfico y la base del display holográfico con todos sus componentes, se establecieron recomendaciones claras que permiten el desarrollo correcto de la herramienta y que garantiza en gran parte su funcionamiento ideal, a su vez dentro del documento de grado no se pretendió contemplar el factor económico. Finalmente se presentaron las conclusiones del diseño dado, para el desarrollo en general de la herramienta, para utilizar este documento como manual de diseño para el desarrollo de la herramienta de proyección holográfica enfocada a glioblastomas para la Fundación Universitaria Los Libertadores.
1. ESTADO DEL ARTE

El estudio para la definición del sistema de control y el sistema de proyección holográfica, fue fundamentado en los aspectos conceptuales, especificaciones técnicas y el análisis de la funcionalidad de estos, dichos tópicos tratados en la documentación consultada la cual se encuentra en los referentes teóricos relacionados en la parte de referencias bibliográficas de este trabajo de Grado.

Los tópicos fundamentales para llevar a cabo el estudio de este proyecto de grado están referenciados como se ve a continuación:

1.1. DOCUMENTACIÓN

Dentro de la información consultada aquellos documentos que hacen referencia a la temática de holografía, propiedades ondulatorias de la luz, óptica geométrica, sistemas de control y tumores (Glioblastomas), como lo fueron los siguientes (entre otros):

- “Basics of holography”, del autor P.Hariharan, donde se exponen diferentes conceptos que hacen parte de la holografía y la generación de imágenes holográficas, que son parte fundamental para poder hacer posible este proyecto.

- “Principios físicos de la holografía”, de los autores Luciano Angel y Daniel Velasquez, en el que se abarcan diferentes términos de la óptica geométrica que son referentes y aplican de forma directa en este proyecto de grado, a su vez también dentro del mismo documento se ven los conceptos referentes a las propiedades ondulatorias de la luz las cuales son un pilar crucial dentro del proyecto ya que la realización e implementación de hologramas, es producida gracias a la manipulación que se realiza a la luz, para realizar dichas manipulaciones se deben tener en cuenta las propiedades ondulatorias de la luz y límites de manipulación que estas proporcionan.
• “Ingeniería de control moderna”, del autor Katsuhiko Ogata, donde se desarrolla un texto educativo que comprende los temas referentes a los sistemas de control, en el cual fue el referente para el sistema que se diseñó dentro de este proyecto.

• “Sistemas eléctricos y electrónicos”, del autor Jesús Martínez Rueda, en el que se describen las configuraciones de motores y se dan muestras de sus beneficios según su configuración, las cuales se tienen en cuenta para dar recomendaciones de la mejor opción de implementación, para dar una mayor eficiencia en el sistema de control de rotación del sistema de proyección holográfica.

• “Glioblastoma y astrocitoma maligno”, texto producido por la American Brain Tumor Association, donde se dan los conceptos de qué es un glioblastoma y en qué edades y personas es más común encontrarlos, esto con el fin de dar un rango de operación más grande en el proyecto y que permita favorecer a una población mayor.

Estos requerimientos fueron definidos por el grupo de investigación “Sistemas integrados y complejos para el reconocimiento de patrones mediante procesamiento digital de imágenes” quién está a cargo del proyecto de investigación y desarrollo del mismo, dentro de la “Fundación Universitaria Los Libertadores”, en el cual siguiente trabajo de grado se enmarca.

1.2. NORMATIVIDAD

Para la implementación del tipo de holografía, se considero principalmente el cumplimiento de la norma vigente regida por la IHMA (INTERNATIONAL HOLOGRAM MANUFACTURERS ASSOSIATION), las cuales tiene el documento de Hologram Copyright Guidelines, donde se debe especificar el tipo de holografía implementado, el caso de uso específico, a quien se dirige o a que mercado se va a implementar o para que uso se va a dar, para dar el aval de la IHMA como un dispositivo y un método de holografía válido, teniendo en cuenta que si el tipo de holografía ya creado esta previamente patentado se debe dar alusión a la fuente de donde ese tomo como guía este tipo
de implementación holográfica.[48]

Fuera de la normatividad anteriormente mencionada no hay documentos públicos que permitan exponer limitaciones legales para la realización de este proyecto de grado.

1.3. ANTECEDENTES

1.3.1. Antecedentes de holografía

Dentro de la holografía se han presentado diferentes variantes para realizar las proyecciones holográficas, estas dependen y varían con respecto al medio de proyección en el cual se pueden visualizar las imágenes tridimensionales, a continuación se tendrán en cuenta varios métodos de proyección holográfica de los cuales se tuvieron en cuenta sus puntos a favor y en contra, lo cual llevo a concluir que tipo de proyección holográfica sería implementada dentro del proyecto de grado, teniendo en cuenta la funcionalidad que va a tener el proyector a realizar dentro del proyecto.

1.3.1.1. Proyector perspecta

Es un proyector de imágenes tridimensionales y volumétrica, utiliza un disco blanco de 25 centímetros de diámetro que gira a 700 RPM y tres proyectores LCD convencionales que emiten flashes de imágenes alternamente sobre un disco, lo que se termina reflejando dentro de la bola la imagen creando la sensación volumétrica. Fue utilizado principalmente para entretenimiento, cuenta con una calidad de imagen de 768x768x198 en un plano de 8 colores = 116millones de voxels, la imagen de proyector perspecta la puede ver en la figura 1. [1]
1.3.1.2. Holografía sónica

Utiliza un material específico en especial un material plástico y por el cual viajan las ondas sonoras, debido al espesor del material, el perfil y los cambios de presión acústica modulada, hacen una variación en las partículas de micrómetros o hasta milímetros, las cuales teniendo la forma deseada a proyectar impresa en el material plástico por la variación de ondas hace posible la visualización del holograma, cabe aclarar que el holograma no tiene gran claridad de visualización, como se desea e el proyecto. Su uso está enfocado para generar formas en pastillas para farmacéuticas, el funcionamiento del tipo de holografía anteriormente mencionado se puede evidenciar en la figura 3 y en la figura 4 puede ver la aplicación de este tipo de holografía.

[2]
1.3.1.3. Holografía proyectada en una ventana de vapor de agua

Se genera una serie de imágenes por computadora o CGH, y por medio de un dispositivo
que por medio de un flujo de aire y agua fina en un espacio determinado se puede visualizar las imágenes CGH anteriormente ingresadas en el sistema, se debe tener en cuenta que la claridad de las imágenes en este tipo de hologramas no es lo suficientemente precisa a lo deseado en el proyecto. Su uso es enfocado en entretenimiento, aunque en sus primeros usos tuvo enfoque en la milicia.[3]

Figura 4: Dispositivo para generar hologramas en una ventana de vapor de agua

Figura 5: Aplicaciones de la holografía proyectada en una ventana de vapor de agua

1.3.1.4. Hologramas de voxiebox

Existen otros hologramas comerciales que hacen parte de la empresa Voxiebox de voxon, que es muy similar al sistema de proyección con láser, pero este tiene como novedad que puede proyectar un área proyección, esta área variará gracias a que consiste en el uso de una matriz como reflector, la cual permite tomar varios rayos de luz para hacerlos converger y luego proyectar en un punto específico el cual está dentro de un espacio delimitado por un display holográfico.\[5\]

Los hologramas de Voxiebox tiene varias utilidades, tienen enfoques médicos, educativos, de video juegos, de marketing y entretenimiento, en la figura 7 puede ver un proyector de Voxiebox de voxon.\[5\]

![Figura 6: Proyector de imágenes holográficas de Voxiebox de voxon](image)

1.3.1.5. Hologramas de seguridad en tarjetas de crédito

Holograma de transmisión de luz blanca, utilizado en las tarjetas de crédito visa, esto se da gracias a una capa transparente que se imprime sobre la tarjeta de crédito, esta capa cuenta con una cinta especial la cual es posible gracias a la impresora Evolis,
la cual aplica sobre esta capa transparente un barniz genérico que ofrecen un tipo de impresoras térmicas.\[6\]

Figura 7: Hologramas de seguridad en tarjetas de crédito

1.3.1.6. Hologramas artísticos y arquitectónicos

Hologramas de objetos delicados y valiosos para sustituir a los originales, ejemplo el caso del Hombre de Lindow, momia de 2300 años, que se encuentra conservada en una bóveda del museo británico de Londres, su holograma está expuesto al público y a los investigadores que visiten el museo.\[7\]

Dentro de los hologramas arquitectónicos son hologramas que se dan dentro de un display volumétrico y se utilizan para explorar una edificación a partir de este medio virtual, tanto para proyectos de una construcción que se quiere realizar, como ya edificios que ya están construidos.\[7\]
1.3.2. Antecedentes imágenes 3d en la medicina

Se debe tener en cuenta que por lo general diagnósticos médicos, analizan la información separada en cortes o imágenes bidimensionales, que se traducen en pérdidas de información espacial y dificultad de interpretación, a su vez en su mayoría todos estos resultados de los exámenes diagnósticos se visualizan en un computador o medio electrónico, en el cual se tiene una percepción de tamaño reducida es decir el tamaño de la imagen en comparación con el tamaño del cerebro observado es reducido, por lo cual la herramienta que se quiere diseñar busca dar una percepción de tamaño más aproximada al real y una visión volumétrica del cerebro en observación, por lo cual se tuvo que tener en cuenta las imágenes tridimensionales que se obtienen en la actualidad a partir de exámenes diagnósticos y las imágenes que entregan estos.

Figura 8: Holograma museo MIT

1.3.2.1. TC tomografía computarizada

es un proceso indoloro y no invasivo usado para producir imágenes rápidas y bidimensionales claras de órganos, huesos y tejidos. La prueba TC neurológica se usa para ver el cerebro y la médula. Puede detectar irregularidades óseas y vasculares, ciertos tumores y quistes cerebrales, discos herniados, epilepsia, encefalitis, estenosis espinal (estrechamiento del canal espinal), un coágulo sanguíneo o sangrado intracraneal en pacientes con accidente cerebrovascular, daño cerebral de una lesión craneana u otros trastornos.

Figura 9: Examen tomografía computarizada cerebral

1.3.2.2. IRM imágenes por resonancia magnética

usan radiooondas generadas por computadora y un campo magnético poderoso para producir imágenes detalladas de estructuras del cuerpo como tejidos, órganos, huesos
y nervios. Los usos neurológicos comprenden el diagnóstico de tumores cerebrales y de la médula espinal, enfermedades oculares, inflamación, infección, e irregularidades vasculares que pueden llevar al accidente cerebrovascular. Las IRM también pueden detectar y monitorizar trastornos degenerativos como la esclerosis múltiple y puede documentar lesiones cerebrales debidas a trauma.[8]

Figura 10: Examen resonancia magnética cerebral

1.3.2.3. Ecografías cerebrales 3d

son técnicas para obtención de imágenes usadas para diagnosticar tumores, malformaciones de vasos sanguíneos, o hemorragias cerebrales. Estas ecografías se usan para estudiar la función del órgano, una lesión o enfermedad del tejido o el músculo. [8]

Figura 11: Ecografía cerebral

1.3.2.4. EEG electroencefalograma 3d

El EEG se usa para ayudar a diagnosticar ciertos trastornos convulsivos, tumores cerebrales, daño cerebral de lesiones craneanas, inflamación cerebral o de la médula espinal, alcoholismo, ciertos trastornos psiquiátricos, y trastornos metabólicos y degenerativos que afectan al cerebro. Los EEG también se usan para evaluar los trastornos del sueño, monitorizar la actividad cerebral cuando un paciente está completamente anestesiado o pierde la conciencia y confirmar la muerte cerebral.[8]

![Figura 12: Electroencefalograma computarizado 3D](image)

1.3.2.5. PET tomografía 3d con emisión de positrones

proporciona imagenes bi y tridimensionales de la actividad cerebral midiendo los isótopos radioactivos que se inyectan dentro del torrente sanguíneo. Las tomografías PET cerebrales se usan para detectar o resaltar tumores y tejidos enfermos, medir el metabo-
lismo celular y tisular, mostrar el flujo sanguíneo, evaluar a los pacientes con trastornos convulsivos que no responden a la terapia médica y pacientes con ciertos trastornos de la memoria, y determinar cambios cerebrales luego de lesiones o abuso de drogas, entre otros. PET puede indicarse como seguimiento para una TC o IRM para darle al médico un mejor entendimiento de áreas cerebrales específicas que puedan estar implicadas en ciertos problemas. [8]

Figura 13: Tomografía 3D con emisión de positrones

1.3.3. Estadísticas tumores

Dentro del estudio realizado se analizaron los diferentes tipos de tumores, enfocando en los tumores cerebrales, viendo cual es el mas frecuente y el que se puede atacar teniendo en cuenta las características técnicas de la herramienta que se quiere diseñar y posteriormente desarrollar, por lo cual se tienen varias estudios de diferentes lugares de Colombia y el mundo dando claridad del porque se selecciono el tumor llamado Glioblastoma que hace parte de los gliomas, el glioblastoma es la fase 4 o el grado 4 de los llamados gliomas, en las siguientes tablas, gráficos y datos vera el porque los glioblastomas son el tumor seleccionado en cuanto al impacto que puede generar en el medico, en cuanto a lo técnico de la herramienta lo podrá ver en el proceso de selección del display holográfico donde se especifica el porque la herramienta es capaz de dar una visualización de los gliomas por medio de ella.\[54\]

Como contextualización acerca de los glioblastomas son los tumores primarios mas comunes en el sistema nervioso central.\[54\]

La herramienta desea permitir la visualización del cerebro como un volumen para ayuda a la visualización de los glioblastomas y su ubicación, así contribuyendo a la detección oportuna de estos tumores y así poder tomar acciones que hagan el menor daño posible a los pacientes posteriormemente.

En la tabla 1, se puede ver el estudio realizado a 212 pacientes que estuvieron en la clínica el bosque entre agosto de 1978 y agosto de 2008, en el cual se visualiza el número de pacientes que tipo de tumor presentaba y que porcentaje en el total de pacientes que representaba la afección según el tumor.
<table>
<thead>
<tr>
<th>Tumor</th>
<th># Pacientes</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gliomas (Glioblastomas)</td>
<td>71</td>
<td>33.49 %</td>
</tr>
<tr>
<td>Meningioma</td>
<td>56</td>
<td>26.41 %</td>
</tr>
<tr>
<td>Adenomas de Hipófisis</td>
<td>20</td>
<td>9.4 %</td>
</tr>
<tr>
<td>Schwannoma</td>
<td>13</td>
<td>6.3 %</td>
</tr>
<tr>
<td>Metástasis</td>
<td>9</td>
<td>4.25 %</td>
</tr>
<tr>
<td>Tumores Embrionarios (Meduloblastomas PNET, DNET)</td>
<td>6</td>
<td>2.83 %</td>
</tr>
<tr>
<td>Hemangiopericitoma</td>
<td>5</td>
<td>2.36 %</td>
</tr>
<tr>
<td>Linfoma</td>
<td>3</td>
<td>1.41 %</td>
</tr>
<tr>
<td>Craneofaringioma</td>
<td>3</td>
<td>1.41 %</td>
</tr>
<tr>
<td>Ependimoma</td>
<td>4</td>
<td>1.88 %</td>
</tr>
<tr>
<td>Condromas</td>
<td>3</td>
<td>1.41 %</td>
</tr>
<tr>
<td>Glomus Yugular</td>
<td>2</td>
<td>0.94 %</td>
</tr>
<tr>
<td>Quiste Epidermoide</td>
<td>3</td>
<td>1.41 %</td>
</tr>
<tr>
<td>Quiste Dermoide</td>
<td>1</td>
<td>0.47 %</td>
</tr>
<tr>
<td>Ganglioglioma</td>
<td>2</td>
<td>0.94 %</td>
</tr>
<tr>
<td>Osteoma</td>
<td>2</td>
<td>0.94 %</td>
</tr>
<tr>
<td>Neurofibroma</td>
<td>2</td>
<td>0.94 %</td>
</tr>
<tr>
<td>Plasmicitoma</td>
<td>2</td>
<td>0.94 %</td>
</tr>
<tr>
<td>Neurocitoma</td>
<td>1</td>
<td>0.47 %</td>
</tr>
<tr>
<td>Quiste de Rathke</td>
<td>1</td>
<td>0.47 %</td>
</tr>
<tr>
<td>Papiloma de Plexos Coroides</td>
<td>1</td>
<td>0.47 %</td>
</tr>
<tr>
<td>Displacía Fibrosa</td>
<td>1</td>
<td>0.47 %</td>
</tr>
<tr>
<td>Gliosarcoma</td>
<td>1</td>
<td>0.47 %</td>
</tr>
</tbody>
</table>

Figura 14: Distribución de la población estudiada en la clínica el bosque separada por género

En las siguientes figuras podrá ver la distribución de la patología de tumores según el género con número exactos de pacientes, en la figura 15 vera la patología para mujeres y en la figura 16 vera la patología para los hombres.
Figura 15: Distribución de los tumores en el género femenino

Figura 16: Distribución de los tumores en el género masculino

A continuación podrá ver los estudios en población pediátrica y en adultos mayores, para el estudio en la población pediátrica puede ver en la figura 17 y para el estudio de adultos mayores puede ver en la figura 18.

![Gráfico 17: Distribución de los tumores en población pediátrica](image17)

Figura 17: Distribución de los tumores en población pediátrica

![Gráfico 18: Distribución de los tumores en adultos mayores](image18)

Figura 18: Distribución de los tumores en adultos mayores

Como dato importante se tiene que el glioblastoma multiforme es el tumor primario del sistema nervioso central más frecuente en hombres. Su incidencia en Europa oscila entre 3 y 4 casos por 100,000 habitantes, y representa el 25% de todos los tumores de sistema nervioso central y el 50% de los tumores primarios. Menos del 3% de todos los pacientes con diagnóstico de glioblastoma sobreviven más de cuatro años y la supervivencia promedio es de seis meses.[56]

Teniendo en cuenta otro estudio realizado en el Hospital Universitario San Jorge, Pereira, Colombia, 2008-2011 se da la cantidad de personas según la edad y el porcentaje que presentan tumores cerebrales teniendo en cuenta que se estudiaron un total de 78 personas.

Tabla 2: Rango de edad de pacientes con tumor cerebral, Hospital Universitario San Jorge, Pereira, Colombia, 2008-2011.

<table>
<thead>
<tr>
<th>Edad (Años)</th>
<th># Pacientes</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-17</td>
<td>71</td>
<td>17.9%</td>
</tr>
<tr>
<td>18-35</td>
<td>56</td>
<td>14.1%</td>
</tr>
<tr>
<td>36-53</td>
<td>20</td>
<td>21.8%</td>
</tr>
<tr>
<td>54-71</td>
<td>13</td>
<td>30.8%</td>
</tr>
<tr>
<td>72-82</td>
<td>9</td>
<td>15.4%</td>
</tr>
<tr>
<td>Total</td>
<td>78</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Finalmente dentro del estudio de la clínica el bosque se tiene como caso críticos los gliomas por lo cual se enfocaron en ellos para hacer parte del estudio, en lo cual se vera reflejado en las siguientes dos figuras, las cuales representaran según genero quien presenta más patologías en gliomas los cual es muy similar en ambos géneros y finalmente que grado de glioma se presenta mas en lo cual se puede evidenciar que el grado 4 es el mas
común por lo cual da la razón a este proyecto de grado a dar foco en los glioblastomas o gliomas grado 4 ya que son tumores muy comunes en general y dentro de los gliomas es el tumor que más se presenta.

Figura 19: Distribución de los pacientes con gliomas por género.

Figura 20: Distribución de los pacientes con gliomas según grado histológico.

2. PROBLEMA

Dentro de la facultad de ingeniería y ciencias básicas de la Fundación Universitaria Los Libertadores se ha dado énfasis en proponer una rama de investigación, orientada a la realización de los trabajos de grado, con el fin de que estos representen una solución practica a situaciones problemáticas existentes y que permitan ofrecer oportunidades de estudios de investigación que involucren tanto a los docentes como a los estudiantes que hacen parte de la facultad.

Gracias al interés que se mencionó anteriormente, se creó el grupo de investigación llamado Sistemas integrados y complejos para el reconocimiento de patrones mediante procesamiento digital de imágenes, en este grupo se identificó la necesidad de desarrollar un estudio en el cual se centre un desarrollo técnico y teórico que permita realizar el diseño de una herramienta de proyección holográfica que permita una visualización de cerebro humano como un volumen, orientando el uso de esta herramienta para la identificación de glioblastomas.

Según el interés que se tiene dentro del grupo de investigación, el problema que se quiere atacar con este trabajo de grado es el diseño de la herramienta que permita la visualización de imágenes diagnosticas del cerebro como un volumen, también se desea visualizar el cerebro humano en un tamaño más aproximado al tamaño real y finalmente esta herramienta tiene como última finalidad permitir visualizar estas imágenes diagnosticas de formas más clara con tal de que permita identificar si hay o no hay glioblastomas en el cerebro estudiado en dichas imágenes médicas.
3. OBJETIVOS

3.1. OBJETIVO GENERAL

Proveer el diseño de un sistema de visualización de imágenes holográficas lo suficientemente útil para dar imágenes con alta calidad y nitidez, con el fin de ser una herramienta útil en su implementación para la caracterización de tumores cerebrales.

3.2. OBJETIVOS ESPECIFICOS

- Consultar y construir un marco teórico constituido de la información necesaria para tener en cuenta en el desarrollo del diseño del componente mecánico y electrónico del sistema de proyección holográfica.

- Desarrollar el debido proceso de definición de los parámetros de selección, para que los componentes del proyecto puedan brindar características funcionales que satisfagan la proyección imágenes por medio del tipo de proyección holográfico escogido.

- Consultar y enfocar el proyecto a la visualización de un tipo de tumor especifico, que tenga un campo de afectación mayor en la población y haga de la herramienta una ayuda a la problemática que genere esta afección en la sociedad.

- Brindar las recomendaciones necesarias con características técnicas que garanticen el funcionamiento correcto del proyecto en general, para hacer que el desarrollo de la implementación de este se lleve a cabo y se pueda dar una herramienta competente para el ámbito médico.
4. MARCO TEÓRICO

4.1. HOLOGRAFÍA

Técnica avanzada de la fotografía, que consiste en crear imágenes tridimensionales, por medio de la implementación de la luz, que trabaja con interferencias entre dos haces de luz que hacen posible que se refleje el objeto deseado.\[14\]

Dentro de la holografía hay que tener en cuenta varios conceptos que hacen valido que un elemento se constituya como un holograma entre eso están los siguientes conceptos, primero la fotografía que es el procedimiento por el que se consiguen imágenes permanentes por medio de la acción fotoquímicas de la luz u otras formas de energía radiante.\[15\] También se debe tener en cuenta que es una imagen los tipos de imágenes que existen y cual que tipo de imagen constituye un holograma, por lo cual una imagen es una Figura de una persona o cosa captada por el ojo, por un espejo, un aparato óptico, una placa fotográfica, etc., gracias a los rayos de luz que recibe y proyecta.\[16\]

Las imágenes tienen una clasificación la cual se da correspondiendo las dimensiones con las que cuentan dichas imágenes, los siguientes son los tipos de imágenes a tener en cuenta en el proyecto:

- **Plana 2D**: Imágenes que contienen dos dimensiones tiene una dimensión que da el ancho y el alto de la imagen.

- **Volumétrica 3D**: Imágenes que aparte de tener dimensiones de ancho y alto tiene una dimensión que da la profundidad con la que cuenta la imagen lo cual ya lo hace un volumen.

En la holografía se debe tener en cuenta cual es la medida de una imagen holográfica, por lo cual es importante tener en cuenta el termino de voxel, un voxel es la unidad cubica que compone un objeto tridimensional, las imágenes holográficas se miden en voxels, en la figura 21 puede visualizar un voxel y su comparación con un pixel.\[38\]
Dentro del proyecto se analizaron los diferentes tipos de holografía para analizar cuál era el más viable, los tipos de holografía constan del fenómeno visual y físico que experimentan y generan. Las clasificaciones son la holografía por reflexión, los hologramas de Fresnel, hologramas de plano de imagen, hologramas de color, hologramas de arcoíris, hologramas prensados y hologramas por computadora (CGH).[14]

El tipo de holografía óptimo según lo deseado son los hologramas por reflexión, esto gracias a que Los hologramas por reflexión consisten en un rayo directo incidente el cual pasa a través de un lente de difusión o un medio de difusión, este medio de difusión es el que permite reflectar el haz de luz generado por el rayo directo, y para contener la imagen en un espacio limitado, se hace una película de vidrio o un material que permita la visibilidad deseada del objeto proyectado y a su vez que contenga la proyección en el espacio deseado, en la figura 22 podrá ver como funciona un holograma por reflexión.[14]
Se tiene en cuenta que el caso de uso del proyecto el obturador y el filtro espacial está dentro de proyector que es el elemento que produce el rayo de luz incidente, aparte el ángulo de incidencia es de 45 grados en cada cara de la pirámide.

4.2. PROPRIEDADES ONDULATORIAS DE LA LUZ

Esas son las operaciones o fenómenos que se presentan en la luz gracias a los cambios que se generan o realizan en las ondas que componen la luz.[18]

Dentro de las propiedades ondulatorias de la luz hay varios conceptos que hacen parte del proyecto e inciden de forma directa en el desarrollo del mismo como lo es, los colores puros los cuales corresponden a los valores de longitud de onda correspondiente a la luz visible por el ojo humano, esos rangos de longitudes de onda dan la percepción de colores y sus diferencias correspondientes a lo que puede notar el ser humano, en la figura 23 puede visualizar el espectro de luz visible por el ojo humano.[18]

También es muy importante tener en cuenta el concepto de luz coherente y laser ya que a partir de este concepto y fenómeno se hará posible la generación de la imágenes que
harán posible la construcción del holograma, La finalidad de un láser es producir una onda electromagnética con unas características únicas. La radiación producida por el láser con esas características únicas o excepcionales se conoce como Luz coherente. [18]

Figura 23: Espectro de ondas electromagnéticas junto con el espectro visible por el ojo humano.

4.3. ÓPTICA GEOMÉTRICA

la óptica geométrica es parte de las leyes fenomenológicas de la reflexión y la refracción. A partir de ellas, basta hacer geometría con los rayos luminosos para la obtención de las fórmulas que corresponden a los espejos, lentes, obteniendo así las leyes que gobiernan los instrumentos ópticos a que estamos acostumbrados.[18]

Dentro de los conceptos que abarca la óptica geométrica hay conceptos que inciden de forma directa e indirecta en el proyecto como lo es la La reflexión, que es el cambio de
dirección de una onda, que, al entrar en contacto con la superficie de separación entre
dos medios cambiantes, regresa al punto donde se originó, puede ver la figura 24 para
notar una visualización basica de este concepto.[18]

La reflexión tiene dos comportamientos, la reflexión especular la cual se da cuando la
superficie con la cual interactúa el haz de luz es lisa o de estructura fina, entonces el
haz de luz rebota en una dirección bien definida dando origen a un único rayo reflejado
y la reflexión difusa la cual se da cuando la superficie con la cual interactúa el haz de
luz es rugosa, entonces el haz de luz rebota en múltiples direcciones, dando la opción
de que desde cualquier punto que se visualice se puede ver luz reflejada en ese punto,
en las figuras 25 y 26 respectivamente podrá ver los fenómenos de la reflexión especular
y difusa.[18]

Figura 24: Imagen funcionamiento de la reflexión de la luz

[41] https://www.fotonostra.com, ¿Qué es la reflexión de la luz?, recuperado de
FotoNostra, 2014.
Figura 25: Imagen Reflexión especular ocasionada por superficie pulimentada o lisa.

Figura 26: Imagen Reflexión difusa ocasionada por superficie rugosa.

Dentro del proyecto la refracción es un concepto que aplica totalmente por eso se debe tener claridad de que es este concepto, la refracción es el cambio de dirección y velocidad que experimenta una onda al pasar de un medio a otro con distinto índice refractivo. Solo se produce si la onda incide oblicuamente sobre la superficie de separación de los dos medios y si estos tienen índices de refracción distintos, en la figura 27 puede ver en funcionamiento el fenómeno de la refracción[^19]

Figura 27: Imagen funcionamiento de la Refracción de la luz.

Para tener en cuenta el material a implementar en el proyecto se implemento un acrílico transparente el cual es muy similar con el índice de refracción del vidrio.
Tabla 3: índice de refracción de los materiales

<table>
<thead>
<tr>
<th>Material</th>
<th>Índice de refracción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacio</td>
<td>1</td>
</tr>
<tr>
<td>Aire</td>
<td>1.0002926</td>
</tr>
<tr>
<td>Agua</td>
<td>1.3330</td>
</tr>
<tr>
<td>Acetaldehido</td>
<td>1.35</td>
</tr>
<tr>
<td>Solución de azúcar (30%)</td>
<td>1.38</td>
</tr>
<tr>
<td>Butanol</td>
<td>1.399</td>
</tr>
<tr>
<td>Glicerina</td>
<td>1.473</td>
</tr>
<tr>
<td>Heptanoil</td>
<td>1.423</td>
</tr>
<tr>
<td>Solución de azúcar (80%)</td>
<td>1.52</td>
</tr>
<tr>
<td>Benceno</td>
<td>1.501</td>
</tr>
<tr>
<td>Metanol</td>
<td>1.329</td>
</tr>
<tr>
<td>Cuarzo</td>
<td>1.544</td>
</tr>
<tr>
<td>Vidrio</td>
<td>1.45</td>
</tr>
<tr>
<td>Disulfuro de carbono</td>
<td>1.6295</td>
</tr>
<tr>
<td>Cloruro de sodio</td>
<td>1.544</td>
</tr>
<tr>
<td>Diamante</td>
<td>2.43</td>
</tr>
</tbody>
</table>

En la proyección del holograma por medio del método seleccionado aplica la interferencia, en este caso la interferencia destructiva en el proyecto esto gracias a las perdidas mínimas que se genera con cada interacción que realiza el haz de luz con el acrílico, la interferencia es un fenómeno en el que dos o más ondas se superponen para formar una onda resultante de mayor, menor o igual amplitud.[20]

La interferencia constructiva se da cuando dos ondas interfieren, en los puntos en que coinciden las dos crestas se dice que hay interferencia constructiva. En estos puntos
se suman las amplitudes de las ondas, en la figura 28 (A) podrá visualizar este tipo de interferencia y la interferencia destructiva. Al interferir dos ondas, en los puntos donde coincide una cresta de una onda con un valle de la otra onda se dice que hay interferencia destructiva. Las amplitudes en este caso se restan y pueden anularse por completo, en la figura 28 (B) podrá visualizar este tipo de interferencia.[21]

Figura 28: Interferencia constructiva y destructiva

En el desarrollo de proyecto otros conceptos de la óptica geométrica aplican como lo son, la homografía es toda transformación proyectiva que determina una correspondencia entre dos figuras geométricas planas, de forma que a cada uno de los puntos y las rectas de una de ellas le corresponden, respectivamente, un punto y una recta de la otra.[22]

También la dioptría es la unidad que con valores positivos o negativos, expresa el poder de refracción de una lente o potencia de la lente, este concepto se tiene en cuenta ya que es un dato necesario para notar hasta que límite de potencia y refracción llega la lente del proyector y así mismo sobre ese valor dado se calculan varios aspectos que influyen en la visualización del holograma. [23]
Al mismo tiempo los conceptos de profundidad de campo, apertura de diafragma y la amplificación de imagen cuyos términos hacen parte directa de los fenómenos que se quieren provocar para generar el holograma por reflexión. La profundidad de campo es la distancia por delante y por detrás del punto enfocado que aparece con nitidez en una foto, depende de la apertura de diafragma y de la distancia focal con la que cuenta el observador hacia el objeto.[24]

![Figura 29: Profundidad de campo](image)

Como se nombro anteriormente, el diafragma es una parte del objetivo que limita el rayo de luz que penetra en la cámara. Funciona como el iris del ojo humano, abriéndose o cerrándose para permitir que entre más o menos luz según sea necesario.[25]

Lo abierto que está el diafragma es lo que se llama apertura de diafragma, la apertura de diafragma se mide en números f. El salto de un valor al siguiente se denomina paso.[25]
Figura 30: Apertura de diferentes diafragmas y su nitidez de imagen

Y finalmente la amplificación de imagen es el máximo acercamiento que se puede dar a una imagen de tal forma que se siga viendo con claridad la imagen, ya cuando se pierde esta cualidad la amplificación máxima de la imagen se superó por eso se genera el fenómeno en el cual la imagen se ve borrosa o se cambian aspectos en visibilidad.[14]

La geometría epipolar es un concepto muy importante ya que es uno de los fundamentos de la proyección holográfica que se quiere implementar. La geometría epipolar es la geometría proyectiva entre dos imágenes, la cual a partir de dos imágenes diferentes de un mismo objeto es capaz de reconstruir las verdaderas proporciones de un objeto 3D.[26]

4.4. ESTEREOSCOPICIA

Es una técnica para obtención de información en tres dimensiones, que haga posible dar la sensación de profundidad. La imagen 3D es creada capturando una imagen ligeramente diferente para cada ojo, es decir, perspectivas diferentes de una misma escena. Esas
La estereoscopia es un concepto clave ya que explica el fundamento de la forma de reconstruir imágenes que se va a realizar, pero para ellos hay varios aspectos que se deben tener en cuenta primero los principios de la estereoscopia los cuales son los siguientes:

Paralaje por movimiento: Sensación de movimiento en uno o más objetos situados en un lugar, dado gracias al desplazamiento o movimiento del observador."\[28\]

4.5. PANTALLAS HOLOGRÁFICAS O DISPLAY HOLOGRÁFICO

(holographic display o pantallas holográficas) son los dispositivos que tienen características las cuales utilizan los principios de la holografía para la reproducción de imágenes tridimensionales.[14]

Dentro del proyecto se implementó una pantalla que tiene visualización 360 grados, esto significa que es un elemento que permite la visualización de las imágenes holográficas desde cualquier ángulo sin importar la altura o la distancia, los materiales que componen este display permiten obtener la máxima calidad de visualización.[14]

4.6. SISTEMAS DE CONTROL

Un sistema de control es un grupo elementos que permite tomar una variable manipularla con el fin de afectar su valor para así poder controlar ese valor. La variable que se controla o afecta es la salida del sistema, afectar o controlar ese valor es medir el valor de la variable del sistema que esta siendo controlada y aplicarle la variable manipulada al sistema con el objetivo de corregir o limitar la desviación del valor medido respecto al valor deseado.[49]

\textbf{Figura 33:} Esquema sistema de control básico

4.6.1. Control digital

Un sistema de control digital es el sistema en el cual las variables son manipuladas y controladas por medio de un elemento digital como un microcontrolador, un computador o un medio digital, este sistema permite mayor precisión que un sistema analógico por lo cual este es el óptimo para ser implementado dentro de este proyecto de grado.

4.7. MOTORES DC

Los motores de corriente continua son motores implementados en diseños de ingeniería debido a las características de torque, velocidad y control que poseen con diferentes configuraciones eléctricas y mecánicas.\[51\]

La gran ventaja de los motores DC es el control con suavidad que permiten y en la mayoría estos motores son reversibles a diferencia de los motores AC, aparte tienen una respuesta muy rápida gracias a la razón de inercia y torque con las que cuentan sus rotores, también permite un frenado dinámico, donde la energía generada por el motor se alimenta del resistor disipador.\[51\]

En el proyecto se debe tener en cuenta el tipo de motor que se espera implementar, por lo cual el óptimo es un motor paso a paso por el control minucioso que este permite pero se debe tener en cuenta el concepto del mismo, los motores paso a paso son motores que están normalmente constituidos por un rotor, sobre ese rotor van aplicados distintos imanes permanentes y por un cierto numero de bobinas excitadoras bobinadas en su estator. Las bobinas son parte del estator y el rotor es un imán permanente. Toda la conmutación de las bobinas debe ser externamente manejada por un controlador.\[52\]

También se tiene en cuenta el tipo de configuración en el devanado del motor para ver si cumple con el objetivo para este motor, en este caso se decidió implementar un motor de configuración compuesta ya que es el más comercial, se argumenta con su propio concepto y también con su relación velocidad-torque como se ve la figura
que es una buena opción para el proyecto, un motor eléctrico DC de configuración compuesta es el cual la configuración sus devanados tiene una parte en configuración serie y una en configuración en paralelo, esto para conseguir las ventajas de estas dos configuraciones, este tipo de motores es idóneo para aplicaciones en las que se varié la relación de esfuerzos sobre los bobinados, es decir la variación del par del motor y la velocidad según corresponda a la aplicación implementada, este tipo de configuración la podrá visualizar en la figura 34.[53]

![Figura 34: Motor DC en configuración compuesta](image)

Este tipo de motores es idóneo para aplicaciones que requieren cargas repentinanas durante un tiempo determinado, para luego operar sin cargas mecánicas.[53]

En el caso de el proyecto implementado es una implementación correcta como se percibirá en la gráfica que esta en la figura 35, gracias a la relación de Par y velocidad que puede generar este tipo de devanado de motor, aunque la opción más correcta sería una configuración paralela ya que permite estar a una velocidad y un par más regular por un tiempo más longevo.

4.8. TUMORES

4.8.1. Definición tumor cerebral

Un tumor cerebral es una masa de células innecesarias que crecen en el cerebro o en el conducto vertebral. Hay dos tipos básicos de tumores cerebrales: tumores cerebrales primarios y tumores cerebrales metastásicos. Los tumores cerebrales primarios comienzan en el cerebro y tienden a permanecer en el mismo. Los tumores cerebrales metastásicos comienzan como un cáncer en otra parte del organismo y se propagan hacia el cerebro.\[35\]

4.8.2. Causas

Dentro de las causas posibles para la generación de un tumor están la genética, los cromosomas, traumatismos, radiaciones, contacto con sustancias químicas y el tez de
la piel, pero no se tiene definida una razón exacta por la cual se generen, pueden ser ocasionado por alguna de las anteriormente mencionadas.\[^{36}\]

4.8.3. Glioblastomas

El glioblastoma es un tipo de cáncer agresivo o un tumor primario, que se genera en el cerebro o la médula espinal. Los glioblastomas se forman a partir de células denominadas astrocitos que proporcionan apoyo a las neuronas.\[^{37}\]

El glioblastoma puede ocurrir a cualquier edad, pero es más frecuente en adultos mayores. Puede provocar dolores de cabeza que empeoran, náuseas, vómitos y convulsiones.\[^{47}\]
5. PROCESO DE SELECCIÓN TIPO DE HOLOGRAFÍA

Teniendo en cuenta la normatividad nombrada en el documento anteriormente nombrado (Hologram Copyright Guidelines), primero se debe decir que tipo de holografía se va a implementar, en este caso es la holografía por reflexión en específico al caso del Efecto fantasma de pepper (Houdin, 1885) el cual consistía en utilizar una pantalla transparente a 45 grados con respecto a la horizontal, colocada justo enfrente del escenario, donde se situaba el actor que caracterizaba al fantasma y en el cual incidía una potente fuente de luz que generaba una proyección del actor y sus movimiento en la pantalla y ese efecto visual percibían los espectadores, este efecto no es nuevo por lo cual no se deben atribuir créditos de dicho sistema de holografía, pero en cuanto a la normatividad si se especifica el para que se va a implementar, en este caso es un sistema de proyección imágenes medicas centradas en el cerebro humano y el exterior de sus lóbulos y el exterior del cerebelo, para la visualización de tumores en el cerebro (Glioblastomas), en la figura podrá ver el Efecto fantasma de pepper en acción.

![Figura 36: Efecto fantasma de pepper](image)

Este sistema de proyección en el proyecto es el seleccionado gracias a que permite visualizar una imagen con una buena calidad de imagen, con gran nitidez, con pocas perdidas de las características fundamentales de la imagen a su vez permite visualizar la imagen en un tamaño dependiente al display volumétrico el cual permitirá ampliar la imagen a diferencias los exámenes diagnósticos actuales que los entregan en un tamaño reducido y en una pantalla digital, este será visto como un volumen y fuera de un dispositivo digital, lo cual permitirá primero tener una percepción de tamaño mayor del cerebro humano estudiado en y a su vez la percepción de verlo como un volumen y en cada cara del display puede visualizar cada costado del cerebro, con el fin de facilitar la tarea de visualizar los tumores en él.

A continuación, en la figura 37 podrá ver el funcionamiento del método de proyección que se quiere implementar.

Figura 37: Modelo de funcionamiento de proyección de imágenes aplicado a una sola cara del display

Como se ve en la figura 37 se puede ver que el proyector o videobeam genera un haz de luz de la imagen transmitida o imagen que se desea proyectar, el proyector cuenta con una potencia de proyección la cual depende de la referencia y las características
técnicas con las que cuenta el proyector, luego el haz de luz se refracta con el acrílico que esta de forma horizontal y a su vez se interfiere por lo cual primero se realiza refracción, esto gracias a que el haz de luz, la normal y el rayo refractado gracias al medio transparente es igual a cero, esto se calcula con la ecuación 1, luego se interfiere de forma destructiva aunque mínima por el mismo acrílico, por el material con el que interfiere la interferencia es mínima por eso se omite ese valor, luego el haz de luz resultante del proceso anteriormente nombrado vuelve a sufrir una interferencia destructiva, nuevamente algo insignificante con el acrílico que esta situado con una diagonal de 45 grados y con ese mismo acrílico ese haz de luz genera una reflexión especular que termina produciendo la imagen final proyectada.

Principio reflexión de la luz

Como se ven en la figura 38, el funcionamiento de la reflexión de la luz, el ángulo incidente y el ángulo reflejado está a 45 grados de la normal, esto gracias a este principio, baso este funcionamiento exacto rige el proyecto de grado, la reflexión de la imagen previamente refractada, en el caso del proyecto el rayo incidente está a 45 grados de la recta normal que en este caso es la misma superficie incidente o el acrílico y como se ve en la ecuación (5.1) que indica que el grado del rayo incidente es igual al del rayo reflejado, esto se cumple en el proyecto ya que el rayo incidente está a 45 grados del acrílico o medio incidente y la imagen proyectada o el haz de luz reflejado se presenta a 45 grados del medio incidente como se ve en la figura 37.

Figura 38: Principio funcionamiento reflexión de la luz
Ecuación reflexión de la luz.

Donde \hat{i} es el angulo del rayo incidente y \hat{r} es el rayo reflejado.

$$\hat{i} = \hat{r}$$ \hspace{1cm} (5.1)

Aplicación de la ecuación con los datos reales del proyecto.

$$45° = 45°$$

Ecuación refracción de la luz.

La ley de Snell que esta en la ecuación (5.2) es la que rige la refracción de la luz en los objetos, esta ecuación depende de 4 variables primero n_1 que es el índice de refracción del primer elemento con el que interactua el haz de luz, segundo n_2 que es el segundo elemento con el que interactua el haz de luz, aparte inciden el ángulo de incidencia θ_1 y el ángulo de refracción θ_2.

$$n_1sin\theta_1 = n_2sin\theta_2$$ \hspace{1cm} (5.2)

De acuerdo con lo anterior se tiene que el proyector que genera el rayo incidente lo genera con una inclinación de 30° esto gracias a su ubicación por diseño de la base, por tal razón se debe hacer el calculo del ángulo del rayo reflejado para dar la proyección correcta del objeto emitido por el videobeam.
Para realizar el calculo nombrado en el parrafo anterior se debe despejar de la ecuación (5.2) la variable θ_2 la cual corresponde al ángulo refractado, lo cual vera a continuación.

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$\frac{n_1 \sin \theta_1}{n_2} = \sin \theta_2$$

$$\sin^{-1} \left(\frac{n_1 \sin \theta_1}{n_2} \right) = \theta_2 \quad (5.3)$$

Apartir de la ecuación (5.3) se realizo el siguiente procedimiento y se obtuvo el valor del ángulo refractado.

Los valores de n_1 y n_2 se obtubieron de la tabla 3 de índices de refracción de los materiales.

$$\sin^{-1} \left(\frac{n_1 \sin \theta_1}{n_2} \right) = \theta_2$$

$$\sin^{-1} \left(\frac{1,002926 \sin 30}{1,45} \right) = \theta$$

$$20,23^{\circ} = \theta_2$$
Ya teniendo claridad de el angulo de refracción se puede dar una imagen de a donde apuntara el rayo que luego de eso sera reflejado, este proceso lo puede ver en la figura 39, pero tenga en cuenta que la inclinación de las rectas no esta exactamente al grado especificado es solo un modelo que permitira visualizar el posible funcionamiento.

Figura 39: Modelo de funcionamiento proyección objetos con respecto al principio de reflexión Efecto fantasma de pepper
6. PROCESO DE SELECCIÓN Y DISEÑO DISPLAY HOLOGRÁFICO

Las imágenes de diseño realizadas y presentadas en este documento se realizaron por medio de la herramienta Sketchup pro 2018 y Sketchup pro 2019.

Para el proceso de selección del display volumétrico se tuvieron en cuenta varios aspectos técnicos y físicos que dan las condiciones correctas para proyección de hologramas con el método de proyección especificado en el proceso de selección de la sección anterior.

- Un objeto que permita visualización de 360 grados.
- Un objeto que permita ver una imagen de un tamaño considerable es decir que permita proyectar una imagen mayor a 15x15 cm de imagen plana.
- Un elemento transparente que permita refractar y reflejar rayos de luz, esto con el fin de permitir efectuar la proyección de imágenes.
- Tener un objeto que permita dar nitidez y calidad de imagen, esto dependiendo del procesamiento y de la calidad de la imagen que se proyecta.

A continuación se dará a conocer la opción seleccionada para el display holográfico, es un elemento de acrílico el cual es transparente, a su vez el grosor de cada lamina es de 1/2 cm, su forma es una pirámide en la cual cada cara de la pirámide tiene en la parte inferior 10 cm de ancho y en la parte superior cuenta con 60 cm de ancho y la altura de cada lamina es de 90 cm.
A continuación, vera una tabla con los criterios de selección correspondientes a las condiciones dadas previamente y donde notara que el display seleccionado cumple con las condiciones establecidas para el desarrollo correcto del proyecto.

Tabla 4: Condiciones de los criterios de cumplimiento del display a seleccionar

<table>
<thead>
<tr>
<th>Condición</th>
<th>Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visualización 360 grados</td>
<td>Objeto de 4 caras (Permite visualización 360 grados)</td>
</tr>
<tr>
<td>Tamaño imagen plana</td>
<td>Tamaño mínimo 10x10 cm y tamaño máximo 25x25 cm.</td>
</tr>
<tr>
<td>Refracción</td>
<td>Índice refracción vidrio 1.45, cumple con este fenómeno.</td>
</tr>
<tr>
<td>Reflexión</td>
<td>Elemento transparencé que permite reflexion de la luz.</td>
</tr>
</tbody>
</table>

Este display es el optimo para este tipo de holografía como se ven en los cumplimientos establecidos en la tabla 4, pero para argumentar el porqué este es el display correcto se realizó una comparación con los diferentes tipos de holografía presentando en la sección de antecedentes, en los cuales a continuación se dará con razón exacta el porqué no se implemento el tipo de display o holografía establecido en los antecedentes que fueron parte crucial para la toma de decisiones en el desarrollo del proyecto.
La holografía sónica no se implementó, primero porque hasta el momento las imágenes proyectadas son en tamaños muy pequeños el tamaño máximo es de 5 cm por esa razón ya no cumple la condición del tamaño de imágenes en el cual el proyecto quiere aportar algo diferente a las herramientas existentes.

La holografía proyectada en una ventana de vapor de agua no es la óptima por la calidad de las imágenes que puede generar, aparte por la nitidez de las imágenes, la calidad de las imágenes depende totalmente del display de proyección holográfico.

La opción de voxiebox es una opción muy buena, aunque requiere equipos extremadamente costosos y a su vez es una empresa que no da equipos para desarrollo de herramientas finales, voxon solo se encarga de dar el producto final funcionando cosa que no tiene sentido implementar en un proyecto de grado.

Hologramas de seguridad no son los optimos porque no dan una vista de 360 grados de las imágenes por eso también se descarto tomar como punto de partida o referencia ese tipo de holografía.
7. PROCESO DE DISEÑO BASE DISPLAY HOLOGRÁFICO

Para la realización de la selección de la base que sostienen el display volumétrico se seccio-
ciono el proceso en 3 partes, estas con el fin de definir objetivos según el funcionamiento
deseado de la base en general, los procesos está enumerados a continuación.

1. Selección opción de diseño para permitir la visualización de proyecciones.

2. Selección de elementos y ubicación para garantizar la estabilidad del display vol-
umétrico.

3. Selección de elementos para permitir la rotación del display volumétrico.

7.1. CONDICIÓN 1

Permitir la visualización de las proyecciones

Por la primera razón mencionada anteriormente se propuso un sistema completo como
base, el cual consta de 4 parales que sostienen un acrílico cuadrado de 60x60 cm que es
la base donde se situara la pirámide o el display holográfico, a su vez en los parales se
colocaran los proyectores los cuales según su ubicación podrán emitir el haz de luz hacia
la parte superior, donde esta la base de acrílico y posteriormente el display holográfico,
lo mencionado anteriormente lo puede ver en la figura 41.
Cómo se puede ver en la figura 42 el display se divide 4 secciones iguales, las cuales permiten realizar la proyección por esos espacios, sin ninguna interferencia ni afectación al haz de luz que atraviesa el akrílico, a su vez por la forma del display holográfico (piramidal de 4 caras) es fácil seccionar en 4 partes las secciones de proyección para garantizar la reflexión del haz de luz que se refleje en cada cara de la pirámide, también puede ver en amarillo resaltado el punto donde se espera que pase el haz de luz y como logra ver no sufre ninguna interferencia.

Figura 41: Vista lateral base display holográfico propuesto para cumplir condición 1 de diseño.

Figura 42: Vista superior base display holográfico propuesto para cumplir condición 1 de diseño.
7.2. CONDICIÓN 2

Garantizar la estabilidad del display volumétrico.

Para favorecer o cumplir la condición 2, se realizaron tres acciones, la primera es asegurar los parales a una tabla de 60x60 cm que está situada en el suelo la cual tiene un grosor de 1 cm y la cual permite tener estables y seguros los parales por lo cual se garantiza la estabilidad de estos y a su vez se colocaron tablas en cada uno de los costados, en la cual se asegura con tornillos la base de acrílico sobre la cual va el display y finalmente se aseguró la pirámide a la válvula que trabaja como eje de rotación por medio de una lámina metálica de 7x10 cm (7 de alto y 10 de ancho), la cual se atornillo a la base de 10x10 cm que tiene en la parte inferior la pirámide y la lamina por el otro costado se soldó a la válvula para asegurar que no se suelte y que brinde estabilidad a la pirámide en el proceso de rotación.

![Figura 43: Vista lateral base del display volumétrico con la implementacion de las tablas a los costados y en el suelo](image-url)
Figura 44: Vista superior base metálica junto con la válvula a la que se aseguró a la pirámide.

Figura 45: Vista lateral base metálica junto con la válvula a la que se aseguró a la pirámide.
7.3. CONDICIÓN 3

Selección de elementos para permitir la rotación del display volumétrico.

Como primer paso se analizó que elementos se pueden implementar para hacer efectivo el sistema que haga rotar el display volumétrico, el display volumétrico debe rotar para garantizar que la proyección de la imagen se vea estable y a la vez se vea con un efecto óptico que la hacer ver suspendida dentro del display volumétrico.

Para cumplir con este objetivo de hacer rotar el display se debe tener en cuenta también no interferir en los dos ítems de selección de la base del display volumétrico mencionados en las secciones 7.1 y 7.2 del presente documento.

Por lo cual primero teniendo en cuenta los ítems anteriores, se decidió tener una válvula que esta previamente adherida a la base del display volumétrico, esta válvula es a la medida del orificio de una balinera, la cual esta a la ajustada a un orificio realizado en el centro del acrílico sobre el que se sostiene el display volumétrico, a su vez el centro de la balinera se adhirió a la válvula por medio de resina epoxica la cual garantiza que estos elementos no se suelten y a su vez que puedan dar rotación al sistema, en la figura 46 se especifica a que parte de la balinera se le aplico la resina epoxica para que se adhiera a la válvula, otra opción analizada fue soldar la parte interna de la balinera a la válvula con el fin de garantizar que no se suelten los elementos pero por el espacio tan reducido se puede realizar daños en las piezas por esa razón no se implementó esta acción en estas piezas.
La justificación de la implementación de la balinera para permitir la rotación, es porque es un elemento que añade una fricción mínima o nula por esa razón es un elemento perfecto para la realización del proyecto, a su vez es un elemento pequeño que por su tamaño no alcanza a interferir en la proyección del haz de luz de cada punto.

A la válvula se piensa adherirle un piñón que permita adaptar una correa de distribución, también al motor se le adhiere otro piñón para realizar una adaptación de la correa de distribución a ese punto y así al rotar el eje del motor se realiza al mismo tiempo la rotación del eje que hace rotar el display volumétrico, en la figura 47 podrá ver el modelo (Con dimensiones no exactas de las piezas) en el cual se parametriza el funcionamiento mencionado anteriormente.
Como segundo ítem para suplir la condición de diseño 3, se busca la ubicación del montaje del circuito del motor y demás circuitos que sean necesarios en el desarrollo del proyecto en un lugar donde no interfieran en la proyección de las imágenes a realizar, por lo cual se pensó es realizar una caja de madera que se adhiere a una de las piezas laterales de madera con el fin de darle un buen punto de ubicación, un punto que permita el funcionamiento del motor de forma correcta y así mismo una ubicación que no interfiera en la proyección de las imágenes, por lo cual en la siguiente figura, figura 48 (A y B) podrá ver donde se ubicó la caja de madera mencionada y podrá ver también que en su funcionamiento en general no interfiere.

Figura 47: Diseño funcionamiento mecánico con piezas ampliadas (Piezas en dimensiones no exactas)
Como tercer ítem que es el ítem final que garantiza el funcionamiento, se dio como opción de implementación dar un motor paso a paso, realizar un control digital por medio del microcontrolador Arduino UNO, dar como opción de enlace una correa distribución entre el eje del motor al cual se le adaptaría un piñón y la base de la válvula a la cual se le añadiría un piñón y finalmente porque se podría implementar un circuito amplificador de corriente al sistema.

Primero se decidió implementar un motor paso a paso, ya que este provee un control minucioso de cada paso y a que razón de paso queremos que vaya el motor, si queremos que solo rote un cierto ángulo específico sobre el eje y a su vez podemos dar un control de velocidad óptimo, por estas razones se decidió como opción mas correcta el proponer la implementación de un motor paso, en el caso de implementación se recomienda dar un control de los paso de la forma llamada secuencia normal, la cual está especificada en la figura 49, este forma de activación consiste en activar dos bobinas por paso, esto garantiza que se obtiene un alto torque de paso el cual es necesario para esta aplicación.
En el proceso realizado se propone implementar un control digital ya que es un control que permite dar manejo exacto de variables, el cual está diseñado como un control en lazo abierto, el cual cuenta con una entrada la cual es la activación de los pasos del motor correspondiente a la velocidad máxima de revoluciones que puede dar este motor, por medio del microcontrolador Arduino UNO que actúa como actuador o activador de la variable a controlar se envía pulsos secuenciales al circuito que tiene conexión directa con el motor con el fin de proveer la activación del mismo y de forma real o física se mira y verifica el punto máximo de funcionamiento de la herramienta, midiendo sus revoluciones por minuto y teniendo en cuenta cuantas revoluciones son necesarias para hacer posible la proyección de las imágenes holográficas, el estimado es de 50 a 70 rpm para hacer posible la proyección de imágenes holográficas en la forma deseada.

El dato de los rpm necesarios para la realización e un holograma es tomado del dispositivo real (Dsee-30s) y funcional de DSEELAB que es creador y productor de dispositivos de proyección holográfica.
Figura 50: Diagrama sistema de control para realizar proyecciones holográficas, bajo las condiciones propuestas.

Analizando la condiciones dadas se propone dar como elemento de unión entre los piñones una correa de distribución ya que es un elemento que primero permite un rango de tensión muy alto, permite ajuste para los piñones con correas dentadas y no dentadas, aparte se puede comprar o mandar a hacer a la medida exacta que se necesite y a si vez es un elemento que por su ubicación y tamaño no va a interferir en el funcionamiento de proyección de las imágenes holográficas dadas.

Figura 51: Correa de distribución

Para el proceso de activación del motor paso a paso, primero se programa el microcontrolador con las condiciones correspondientes para la activación secuencial mostrada en la figura 49, luego de la salida del microcontrolador para cada pin esta debe ingresar
al ULN2003, que internamente en cada entrada tiene un circuito Darlington el cual permite una amplificación de corriente teniendo una corriente de entrada pequeña, este se utiliza para poder activar el motor ya que la corriente de salida que provee una salida de Arduino es de máximo 40 mA, teniendo en cuenta que su salida por pin es de 5v, que no alcanza a ser lo necesario para activar una bobina del motor, la corriente luego de ser amplificada por el ULN2003 permite la activación de las bobinas del motor, a continuación en la figura 52 podrá ver la configuración interna de cada pin del ULN2003 y en la figura 53 podrá ver la configuración de la conexión entre el Arduino UNO, el ULN2003 y el motor DC paso a paso, como se ve en la figura 54 se ve la simulación del Darlington interno con el que cuenta un driver del ULN2003, el cual ya arroja como salida 1.26 Amperes que activan el motor DC, esto fue verificado de forma real ya que esto si hace posible la activación de las bobinas del motor y lo hacen mover.

Figura 52: Configuración interna Driver ULN2003

Figura 53: Simulación realizada en Multisim 14 de circuito Darlington interno del ULN2003 con entrada de 5v simulando pin del Arduino UNO.

Figura 54: Diagrama montaje para activación del motor paso a paso.
8. CONCLUSIONES

Como resultado del desarrollo de este Trabajo de Grado se presentan como conclusiones:

- El diseño dado es funcionalmente completo, si se siguen a cabalidad las recomendaciones dadas, teniendo en cuenta que varias de ellas se pueden mejorar y así mismo el funcionamiento de la herramienta en su implementación puede ser mejor, esto dependiendo de qué tipo de elementos se le agreguen al dispositivo final.

- La información dada dentro del marco teórico, referencial, la normatividad y las diferentes fuentes estudiadas dentro del documento dan las herramientas necesarias para hacer posible el desarrollo del dispositivo de proyección propuesto.

- El enfocar la herramienta de proyección holográfica a la identificación de glioblastomas, es una decisión correcta ya que, según los estudios dados en el documento, es un tipo de tumor que puede afectar en cualquier rango de edades y a la vez la relación de pacientes con tumores en el cerebro y pacientes con glioblastomas es alta.

- Si se siguen las recomendaciones dadas a cabalidad, la posibilidad de que la herramienta no funcione correctamente es muy baja ya que estas recomendaciones son dadas según estudio y experiencia con el avance realizado de la herramienta.
9. RECOMENDACIONES

Con el fin de garantizar el funcionamiento pleno del sistema de proyección holográfica se recomienda que tenga en cuenta los siguientes puntos.

- Como primera recomendación se indica implementar un motor paso a paso, que tenga un par superior a 5kg ya que la estructura con el acrílico tiene un peso de 4,5kg, por lo cual se requiere un par de motor alto para que tenga la suficiente fuerza para realizar el movimiento del display volumétrico, para esto se recomienda el motor paso a paso SUNHOKEY (SL42STH48-1504A), el cual cuenta con un par de 5,5 kg, por lo cual cumple con la condición del par necesario, pero también se puede garantizar que el motor va a trabajar a un 73% de su máximo rendimiento en cuanto al par de el se indica.

- Se recomienda implementar 4 proyectores para garantizar la reconstrucción de las imágenes en cada cara del display, de lo contrario al implementar menos proyectores se debe aumentar notablemente los rpm a los que debe girar la estructura y a su vez el procesamiento de las imágenes debe cambiar para reconstruir la totalidad de estas.

- Se recomienda a la salida de cada driver del ULN2003 añadir un circuito Darlington con el fin de amplificar la corriente para mejorar la condición de rpm del motor implementado, teniendo en cuenta que al tener mayor corriente se elevan las rpm del motor o se puede implementar un nuevo ULN2003 en el cual las salidas del ULN2003 numero 1 vayan direccionadas directamente a las entradas del ULN2003 numero 2 y la salida de este vaya al motor paso a paso, en los siguientes cálculos podrá ver las rpm con las que cuenta el motor SUNHOKEY (SL42STH48-1504A) actualmente y tendrá en cuenta que para poder realizar la proyección de imágenes se necesita tener entre 50 y 70 rpm.

Ecuación par motor eléctrico, donde M es el par del motor en kg/m, P es la potencia en Hp, V es la velocidad de giro en rpm y 5252 es correspondiente a la constante de motores eléctricos.

76
\[M(kg/m) = \frac{P(Hp) \cdot 5252}{V(rpm)} \] (9.1)

Tabla 5: Características técnicas motor SUNHOKEY (SL42STH48-1504A)

<table>
<thead>
<tr>
<th>Característica</th>
<th>valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>SL42STH48-1504A</td>
</tr>
<tr>
<td>Longitud</td>
<td>4.7cm</td>
</tr>
<tr>
<td>Voltaje nominal</td>
<td>2.8V</td>
</tr>
<tr>
<td>Corriente nominal</td>
<td>1.68A</td>
</tr>
<tr>
<td>Torque</td>
<td>5.5 kg/m</td>
</tr>
<tr>
<td>Potencia eléctrica nominal</td>
<td>4.7W</td>
</tr>
</tbody>
</table>

Teniendo en cuenta la potencia eléctrica nominal del motor se convierte a Hp lo cual da como resultado 0.0063 Hp.

Ahora de la ecuación (9.1) se despeja el valor de hp necesarios para mover la base de acrílico, teniendo en cuenta que se necesita en 50 y 70 rpm, para este caso se asumió el valor de rpm en 60.

\[
\frac{M(kg/m)}{5252} \cdot V(rpm) = P(Hp)
\]

\[
\frac{4.5(kg/m)}{5252} \cdot 60(rpm) = P(Hp)
\]

\[
\frac{4.5(kg/m)}{5252} \cdot 60(rpm) = 0.051(Hp)
\]

\[
0.051(Hp) = 38.03(W)
\]
Teniendo en cuenta la potencia eléctrica necesaria para mover el display a los rpms necesarios, se tiene en cuenta primero el voltaje en 12V que es la fuente de alimentación que tendrá el motor, luego se calcula la corriente necesaria para permitir el funcionamiento correcto del sistema.

Ecuación ley de ohm simplificada.

\[V \cdot I = P \] \hspace{1cm} (9.2)

Despejando de la ecuación la corriente y reemplazando los valores se obtiene lo siguiente.

\[I = \frac{P}{V} \]

\[I = \frac{P}{V} \]

\[\frac{39.03(W)}{12(V)} = I \]

\[\frac{39.03(W)}{12(V)} = 3.16A \]

- Según el funcionamiento del devanado es mas conveniente implementar un motor con configuración paralela ya que según la grafica de configuraciones de los devanados de un motor DC que está en la figura 35 , es conveniente ya que en la aplicación que se quiere dar se requiere una velocidad angular y un par constante por un delimitado tiempo, esta condición la suple a cabalidad un motor en configuración paralela.

- La caja o el espacio para la circuitería debe estar en una esquina de la base con
el fin de no interferir con el haz de luz que genera alguno de los proyectores, pero tenga en cuenta que bajo esa condición el tamaño máximo del espacio para circuitería es de máximo 19x19 cm con eso se puede garantizar que no interfiere en la proyección de las imágenes producida por los proyectores.

Para la selección del proyector que se implemente en el proyecto se recomienda analizar su características técnicas con respecto a los conceptos de holografía, óptica geométrica, propiedades ondulatorias de la luz y estereoscopia, que teniendo en cuenta estos aspectos tendrá la opción óptima para la herramienta.
10. REFERENCIAS

81

[48] IHMA (INTERNATIONAL HOLOGRAM MANUFACTURERS ASSOSIATION), Hologram Copyright Guidelines Sunbury, Reino Unido: IHMA (INTERNATIONAL HOLOGRAM MANUFACTURERS ASSOSIATION).

[56] SONIA JARAMILLO, WALTER OSORIO, JUAN CARLOS ESPITIA, Avances en el tratamiento del glioblastoma multiforme, Bogotá D.C., Departamento de Neurociencias, Facultad de Medicina, Pontificia Universidad Javeriana, 2010.

