ESTRÉS Y CONDUCTA ALIMENTARIA:

EL EFECTO DEL RUIDO COMO AGENTE ESTRESOR EN EL VOLUMEN DE ALIMENTACIÓN DE RATAS WISTAR.

SANDERS LANDÁZURI GÜIZA

LABORATORIO DE PSICOLOGÍA "IVAN PAVLOV"

FUNDACIÓN UNIVERSITARIA LOS LIBERTADORES
FACULTAD DE PSICOLOGÍA
BOGOTÁ D.C.

CONTENIDO

Introducción	1
1. Descripción del problema	3
2. Objetivos	6
2.1 Objetivo General	6
2.2 Objetivos Específicos	6
3. Justificación	7
4. Marco Teórico	9
4.1 Conducta Alimentaria	9
4.2 Estrés	11
5. Marco Conceptual	17
6. Diseño Metodológico	19
7. Técnicas e instrumentos	24
7.1 Procedimiento	26
8. Resultados	28
8.1 Grupo control hembras Vs. Grupo experimental hembras	28
8.2 Grupo control machos Vs. Grupo experimental machos	32
8.3 Grupo control Vs. Grupo experimental	35
9. Análisis y Discusión	39
10. Referencias	42
APÉNDICE	45

Introducción

Este trabajo de grado es desarrollado en el marco de la investigación científica experimental, teniendo el objetivo de brindar un acercamiento a la explicación de una aparente relación simbiótica entre el estrés y la conducta alimentaria, comprensión que para los tiempos que estamos viviendo se hace cada vez más necesaria. No hay que dejar de lado que, si bien se pudiese tomar como una moda del tiempo actual, esta posible relación y sus componentes es una temática que se estudia desde hace aproximadamente 100 años.

El estrés es una problemática que cada vez aqueja a más personas a lo largo y ancho del planeta y poco a poco llega afectar a distintos tipos de población humana e incluso animal. Un problema que hace décadas se creía exclusivo de adultos en Occidente, ha llegado a afectar a la población juvenil e infantil de todos los sexos y razas, de la misma forma que ha llegado a impactar en la vida de personas que viven en zonas remotas de Oriente donde el concepto de estrés no existía en su léxico, es por ello que organizaciones no gubernamentales como la ONU hacen un llamado a tomar conciencia de las posibles consecuencias que los altos niveles de estrés, llegan a tener sobre la vida y a su vez le reclaman a la comunidad científica para que desarrolle y empleé nuevos y mejores mecanismos para la comprensión y el tratamiento de esta gran problemática.

De la misma forma muchas organizaciones, institutos he incluso los mismos científicos, se anticipan a esbozar lo que subyace a tales problemáticas. El caso del estrés y su incidencia sobre la conducta humana, y más específicamente en lo que en este trabajo concierne; la conducta alimentaria, es fundamental ya que como necesidad básica determina la supervivencia de un organismo. Estos tipos de preocupaciones y el reto de afrontarlas de manera innovadora, es lo que motiva el desarrollo de este trabajo investigativo.

En esta investigación se dispuso de 12 ratas Wistar entre hembras y machos divididas en grupo experimental y control, el grupo experimental se expuso a un estímulo auditivo durante dos semanas, generando estrés en estos animales, con el objetivo de evaluar los efectos y el

posible impacto en el volumen de ingesta alimentaria. Aunque los valores iníciales entre el grupo control y el grupo experimental fueron muy similares tanto en peso, taza de alimentación y excreción fecal, solo fue posible evidenciar variaciones en el peso y el volumen de excreción fecal.

1. Descripción del problema

En la psicología como disciplina, se ha venido estudiando históricamente los diferentes fenómenos que enmarcan problemáticas sobre el psiquismo humano, entre ellas el estrés. Del cual se ha investigado y evaluado cuáles son sus implicaciones directas e indirectas y su impacto en otras esferas humanas como son los ámbitos laborales, escolares e incluso los familiares.

El estrés es producto de la evolución humana, juega un papel importante en las respuestas de lucha y huida en situaciones demandantes, y como lo da a entender Sandín (2003), el estrés involucra al sistema nervioso autónomo, activando el sistema simpático e inhibiendo el sistema parasimpático traduciéndose esto en la segregación de hormonas, el aumento del ritmo cardiaco, el incremento de la presión arterial de esta manera haciendo llegar sangre a los músculos y oxígeno al cerebro. Esta respuesta es parte de la naturaleza humana, totalmente normal y positiva dado el mecanismo de supervivencia, pero lo problemático llega cuando esa fase es superada, el estímulo estresor o la sensación subjetiva que acompaña al mismo prevalece y la persona no encuentra los mecanismos suficientes para la reducción o compensación de estos estímulos. Dado esto, la medicina se ha preocupado en gran medida por la explicación y la comprensión de esta problemática y su incidencia en el cuerpo humano, llegando así a conclusión que el estrés producía en pacientes, jaquecas, dolores de espalda, ulceras, diabetes, mareaos, caída del cabello en incluso disfunciones sexuales.

En muchos casos suele ser evidente que las personas utilizan mecanismos de reducción del estrés, usando estímulos placenteros uno de los más comunes es el alimento. Cuando el estímulo estresor suele ser muy intenso o mantenerse durante mucho tiempo, la necesidad del estímulo placentero será requerida en igual medida. Lo cual es de gran relevancia para la psicología como disciplina, ya que parece que esto responde a un fenómeno psicológico. Es aquí donde la relación con el alimento se tergiversa y puede derivar en un exceso de alimentación. De igual forma cuando un estímulo estresor es causante de altos niveles de ansiedad puede llevar a la persona a sentirse invadida de preocupaciones, donde la alimentación dejaría de representar una necesidad básica y pasaría a estar en segundo plano, traduciéndose en una baja sensible de peso.

En Colombia con la resolución N° 3997 del Ministerio de Salud (1996) propone el desarrollo de programas de prevención y promoción de la salud en muchos aspectos del ser humano, entre estos la prevención de los altos niveles de estrés, la promoción de la buena alimentación y conductas alimentarias apropiadas. Pero tal parece que poco de ello se ha materializado en un conocimiento público que permita a la gente del común darle el adecuado nivel de relevancia a estos temas, y mucho menos que la misma población llegue a deducir o comprender las posibles interacciones entre los mismos.

Según el Instituto Colombiano de Bienestar Familiar (ICBF, 2010) en la ENSIN Encuesta Nacional de Situación Nutricional en Colombia 2010 el 51,1% de las personas entre 18 y 64 años tiene sobrepeso u obesidad, situación que predomina cerca de un 10% más en las mujeres que en los hombres (55,1% vs 45,6% mujeres y hombres respectivamente); además esta encuesta demostró que la prevalencia de exceso de peso aumenta con la edad, alcanzando el 66,3% en el grupo entre 50 a 64 años. Asimismo, se encontró que el 62% de las mujeres y el 39,8% de los hombres entre 18 y 64 años presentan obesidad abdominal, ICBF (2010). A nivel global, FAO,WFP & IFAD (2012) denotan que en 2012 habían 868 millones de personas subalimentadas, es decir que no alcanzan a consumir las recomendaciones mínimas diarias de energía para llevar una vida saludable y activa, equivalente al 12,5% de la población mundial y, aunque la mayoría de personas subalimentadas están en los continentes de África y Asia, América Latina y el Caribe aportan alrededor de 49 millones de personas subalimentadas, equivalente al 8,3% de la población de la región; según este informe, en Colombia para el periodo 2010 - 2012 el 12,6% de la población estaba subalimentada.

Por otro lado, el desarrollo de las ciencias modernas ha estado enmarcado en la experimentación con modelos animales, la psicología no es ajena a estos métodos y menos en las problemáticas relacionada al estrés y la conducta alimentaria. Ogden (2005) menciona algunos estudios desarrollados a finales del siglo pasado en ratas, en los cuales inducían estrés y evaluaban sus patrones de alimentación, sin embargo, los resultados de estos estudios ofrecían resultados contradictorios. De la misma forma Díaz-Reséndiz, Franco-Paredes, Martínez-Moreno, López-Espinoza y Aguilera-Cervantes (2009) desarrollan una revisión histórico-conceptual de los efectos ambientales sobre la ingesta de alimento en ratas, en el cual llegan a

concluir la necesidad de nuevas investigaciones en esta línea de investigación básica, ya que los estudios de las variables que modulan la ingesta de alimento no son del todo concluyentes. Debido a lo anterior se plantea como pilar de este estudio la siguiente pregunta: ¿Cómo afecta o impacta el estrés en el volumen de alimentación en ratas Wistar?

2. Objetivos

2.1 Objetivo General

Evaluar los efectos en el volumen de alimentación en ratas Wistar adultas, producto del estrés inducido mediante ruido.

2.2 Objetivos Específicos

- Seleccionar la muestra poblacional a partir de la metodología del estudio, buscando elegir grupo experimental y grupo control.
- Establecer las variables fisiológicas afectadas mediante la medición causal entre los grupos del estudio.
- Evidenciar una diferencia sustancial en la esfera conductual en los resultados obtenidos entre ratas machos y hembras del grupo expuesto al estímulo aversivo.
- Someter a comparación los resultados con diferentes estudios e investigaciones publicadas bajo estándares experimentales de relativa similitud, tanto en modelos animales como humanos.
- Identificar el tipo de ruido a utilizar y los tiempos en el que el mismo debe generar el efecto en la conducta alimentaria.

3. Justificación

Se podrían determinar que las problemáticas sujetas a la alimentación e incluso al estrés se derivan de las situaciones socioeconómicas e incluso culturales, pero también se puede suponer que en algún porcentaje estas problemáticas deben ser derivadas de cuestiones relativas a la esfera psicológica. Es aquí donde nace la iniciativa por la investigación del estrés en la alimentación y más específicamente en la conducta alimentaria, pues ello es de gran importancia para identificar aspectos de la vida psicológica del sujeto que pueden estar afectando comportamientos en la vida cotidiana.

Consideramos importante el abordaje de esta temática y el acercamiento en el ejercicio investigativo que profundice en la misma, donde la psicología como ciencia y disciplina tiene mucho que aportar. Recordemos la definición de psicología planteada por el El Congreso de Colombia (2006) a través de la ley número 1090 de 2006 donde menciona que:

La Psicología es una ciencia sustentada en la investigación y una profesión que estudia los procesos de desarrollo cognoscitivo, emocional y social del ser humano, desde la perspectiva del paradigma de la complejidad, con la finalidad de propiciar el desarrollo del talento y las competencias humanas en los diferentes dominios y contextos sociales tales como: La educación, la salud, el trabajo, la justicia, la protección ambiental, el bienestar y la calidad de la vida. Con base en la investigación científica fundamenta sus conocimientos y los aplica en forma válida, ética y responsable en favor de los individuos, los grupos y las organizaciones, en los distintos ámbitos de la vida individual y social, al aporte de conocimientos, técnicas y procedimientos para crear condiciones que contribuyan al bienestar de los individuos y al desarrollo de la comunidad, de los grupos y las organizaciones para una mejor calidad de vida. (El Congreso de Colombia, 2006)

A su vez es fundamental tener en cuenta que las problemáticas relacionadas a la alimentación humana con un posible origen en lo psicológico, tal parece son cada vez de mayor relevancia tanto para organizaciones privadas, como para instancias gubernamentales. Bien vemos el ejemplo donde el Congreso de Colombia (2009) por el cual decreta la obesidad como una enfermedad crónica de Salud Pública.

Por lo anterior, el impacto de este proyecto se pudiese ver reflejado en la esfera social, mediante el aporte a la compresión de un fenómeno que día a día obtiene más miradas y mayor atención de diversos actores, tanto de organismos educativos, gubernamentales e incluso corporaciones privadas.

El estrés es una problemática que se ha estudiado ampliamente alrededor del primer mundo, tanto por organizaciones gubernamentales de grandes potencias como por organizaciones no gubernamentales de carácter internacional como la Organización Mundial de la Salud (OMS), quienes se han preocupado por el análisis y comprensión de esta problemática en otros países; pero países como Colombia son al parecer relativamente nuevos en el tema, si acaso existe alguna conceptualización desde el campo laboral. Por otro lado Camacho y Vega-Michel (2012) mencionan lo expueto por la OMS reconose al ruido como el principal factor ambiental que afecta la calidad de vida en el mundo ya que que este tiene un agran de inpacto en procesos biologicos psicologicos y sociales.

Según lo menciona López-Espinoza et al. (2012) "El estrés como fenómeno de estudio ha sido analizado históricamente por diversas áreas de investigación, pero es el área experimental la que ha permitido desarrollar su concepto operacional, así como la evidencia científica necesaria para su adecuada caracterización" (p.67). Lo anterior denota la gran importancia que tiene la vía experimental en el campo aplicado y lo útil que puede llegar a ser en la indagación de la relación estrés y alimentación para así evidenciar las afectaciones a nivel psicológico y social; por tanto es necesario tener en cuenta los avances en la investigación aplicada puesto que ellos están demarcados por las premisas que se tengan en el marco de la investigación básica construyendo y deconstruyendo las bases de los modelos que permitan explicar las diferentes problemáticas.

De acuerdo a lo anterior, se pudiese sustentar la importancia de este ejercicio investigativo mediado en un fortalecimiento teórico, documental y experimental de la problemática estrés y conducta alimentaria en el marco de la psicología; para así ver con mayor claridad los aspectos a tener en cuenta para ejercicios futuros tanto de conceptualización como de intervención en la

problemática de interés, teniendo en cuenta la alta relevancia que aparentemente constituye en las dinámicas humanas.

4. Marco Teórico

En este apartado se ubicará la conceptualización de las variables que son objetos de estudio en esta investigación, como lo es el estrés y la ingesta de alimento enmarcada en la conducta alimentaria, a su vez se plasmará la historia de estos conceptos, sus generalidades y finalmente, como se entenderán para el óptimo desarrollo de este trabajo investigativo.

4.1 Conducta Alimentaria

El concepto de conducta alimentaria esta explícitamente relacionado con la alimentación, comprendida ésta como una expresión conductual del ser humano. Para ahondar en la conceptualización de este término, Calvo y Sandoval (1992) plantean en cuanto a la educación de la alimentación en el nivel escolar, en las asignaturas de Ciencias Naturales; que se habla de alimentación y nutrición de forma indiscriminada como si se tratasen de sinónimos, pero la conceptualización demuestra que no es así y denotan diferencias sustanciales. Calvo y Sandoval (1992) conceptualizan la alimentación como "el conjunto de actos que proporcionan al organismo las materias primas de su entorno necesarias para el mantenimiento de la vida. En definitiva, es el aporte de alimentos al organismo" (p.71). Esto deja ver que la alimentación está sometida a influencias externas; ya sean educativas, culturales y económicas, y por esto puede ser modificada de forma consciente. Los procesos que la forman no son exclusivamente fisiológicos (a diferencia de la nutrición): búsqueda, elección y preparación de los alimentos. A su vez, en su búsqueda y selección influyen factores sensoriales bien sean visuales, gustativos, olfativos y/o táctiles entre otros, pero también influyen los factores simbólicos comprendidos como sociales, económicos, religiosos y psicológicos, etc. Por último, Calvo y Sandoval (1992) plantean la nutrición como "el conjunto de procesos mediante los cuales los seres vivos transforman las sustancias aportadas del medio que los rodea (alimentos) en otras para ser utilizadas por ellos y reponer los continuos desgastes de materia y energía" (p.72). Dado lo

anterior la comprensión y el estudio de la nutrición deben estar mediados por las ópticas biológicas, químicas y/o médicas, las cuales permiten evidenciar claramente las complejidades que en esta esfera acontece. La anterior conceptualización de la conducta alimentaria será el referente de esta investigación, para ello es de vital relevancia ahondar en lo que se pudiese denominar su micro estructura, que comprende los apartados de **búsqueda**, **elección** y **preparación** de los alimentos.

Por otro lado Peña y Reidl (2015) mencionan que la conducta alimentaria "obedece a la satisfacción de una necesidad fisiológica, también se basa en pautas socioculturales que determinan las preferencias y el patrón de consumo de los alimentos, superponiéndose a las reacciones fisiológicas relacionadas con el ciclo hambre-saciedad" (p.191). En otras palabras, la conducta alimentaria es un constructo multifactorial y la elección de los alimentos obedece no sólo a la satisfacción momentánea de una necesidad fisiológica; ni a la búsqueda intencional del valor nutricional que aportan los alimentos, sino también a factores socioambientales delimitados por la cultura.

Completando lo anterior y a manera de reflexión se pudiese acotar lo planteado por la Consejería para la Igualdad y Bienestar Social (2005) en cuanto a la alimentación, menciona que el fomento de hábitos adecuados de alimentación es especialmente importante en edades criticas como la infancia, pues además de redundar en la salud de los más pequeños, los buenos hábitos de alimentación serán los pilares básicos para el mantenimiento de estos hábitos saludables en la edad adulta, ya que estos hábitos de una u otra forma pudiesen impactar de manera positiva en el sorteo de diversas problemáticas ya sean biológicas del mismo organismo o psicológicas que el sujeto pudiese experimentar.

En la siguiente conceptualización se intentará dar cuenta de manera más concisa de su relación e incidencia en la esfera psicológica del ser humano y dado esto, es así como en este trabajo investigativo se entenderá la variable de conducta alimentaria. Para Osorio, Weisstaub, y Castillo (2002) la conducta alimentaria se precisa como el **comportamiento normal** relacionado con las prácticas de alimentación, la selección de alimentos que se ingieren, las preparaciones culinarias y las cantidades ingeridas de ellos. De esta misma manera este concepto se ve

reforzado en lo planteando por Palencia (2016) en la definición de la alimentación, la cual conceptúa como:

El conjunto de acciones que permiten introducir en el organismo humano los alimentos, o fuentes de las materias primas que precisa obtener, para llevar a cabo sus funciones vitales. La alimentación incluye varias etapas: Selección, Preparación e Ingestión de los alimentos. Consiste en un proceso voluntario. (p.1)

Estas definiciones claramente denotan la incidencia de la psiquis humana en la esfera conductual. Para dar cuenta de ello con mayor claridad, Roca (2007) menciona dos definiciones por las cuales el paradigma conductual de la psicología entiende a la "conducta" cuando afirma que; dicha conducta es la **acción** que un organismo o individuo efectúa y que ésta a su vez es la **relación** asociativa entre los elementos de una estructura funcional o campo psicológico. En otras palabras, la conducta bien sea la de alimentación o cualquier otra, tiene una funcionalidad y un fin en la esfera psicológica del o los sujetos que la desarrollan.

4.2 Estrés

Tomando el concepto de estrés como respuesta del organismo según Corwin & Buda-Levin (como se citò en López-Espinoza et al. 2012), clasifican al estrés como **crónico** y **agudo**, con base en la duración e intensidad del estímulo aversivo, el estrés crónico se define de esta manera porque se presenta por un periodo de tiempo más largo y en más de una ocasión; el agudo, por otra parte, generalmente en una sola ocasión. Es de esta forma como se entenderá el fenómeno del estrés en este procedimiento investigativo, sin dejar de lado las implicaciones psicológicas, sociales y orgánicas que este tiene sobre los sujetos que ya se han venido desarrollando.

Por lo anterior, y dado la complejidad del concepto en el caso de la definición del estrés, ya varios autores denotan las dificultades para hacerlo, mencionando que:

Todo el mundo habla del estrés, de su importancia en muchas facetas de sus vidas, de su relación con numerosos problemas de salud, de su incidencia en el área laboral (...) Los problemas surgen

cuando tratamos de proporcionar una definición concisa y rigurosa sobre la que todos los investigadores estén de acuerdo. (Caballo y Simon 2000, como se citò en Piña, Ybarra y Fierros, 2012, p.4).

Esto da cuenta de la implicación y la relevancia tanto directa e indirecta que tiene esta temática desde distintas ópticas, ya sean las ciencias sociales, las ciencias de la salud e incluso desde el conocimiento popular y el sentido común. La Real Academia de la Lengua Española, le da al estrés un único significado que bien pudiese resumir en aspectos generales lo que popularmente se entiende por estrés; "tensión provocada por situaciones agobiantes que originan reacciones psicosomáticas o trastornos psicológicos a veces graves" (Real Academia Estañola RAE, 2014).

Si bien es cierto que el estrés es una categoría compleja de definir, se aboga por una conceptualización sencilla que permita dar cuenta de su relevancia psicológica y en esta medida, en apartados siguientes, propiciar un análisis objetivo desde la misma psicología. Para esto se tendrá en cuenta la definición de Chorusos y Gold, 1992; Tsigos y Chrousos, 2002; Varma, Chai, Meguid, Gleason y Yang, 1999 (como se citó en Piña et al., 2012), quienes lo identifican como un acontecimiento circunstancial que posee la capacidad de inducir un cambio en el organismo, puesto que tiende a romper la homeostasis del mismo. El estrés provoca diferentes cambios, entre estos, cambios bioquímicos, fisiológicos y conductuales. En un esfuerzo para conservar la homeostasis el organismo emite respuestas con el único objetivo de incrementar la oportunidad de supervivencia.

Para lo anterior, es vital tener en cuenta que como bien lo menciona Selye (como se citó en López -Espinoza et al., 2012); se adiciona el término "estresor" para la definición del *síndrome general de adaptación*, para que así fuera comprendida como la reacción del organismo ante el estrés. De este modo, se da a entender que es plausible señalar que el estrés puede ser reconocido como estímulo o respuesta.

Por otro lado, Reynoso y Seligson (2005) mencionan que los primeros en revisar este concepto fueron los médicos, a través del estudio de casos que permitió evidenciar distintos

signos y manifestaciones que acompañan la problemática. Esto da a entender que desde el principio existió el cuestionamiento del grado de impacto del estrés en el organismo. Adicionalmente Reynoso y Seligson (2005) también indican la relevancia del estresor, pero no lo conceptualizan en eventos, situaciones u objetos en particular, mencionan que todo estimulo es capaz de provocar estrés y por este elemental hecho debe ser denominado como estresor, pero a su vez, este estresor debe estar ligado al componente emocional del sujeto, dado que los efectos de éste no responden exclusivamente a su naturaleza física, sino que llegan a responder a los factores psicológicos que le rodean. Como conclusión se pudiese plantear la idea de que los efectos del estrés dependen de la manera en que el sujeto signifique y llegue a valorar el posible estimulo estresor que pudiese experimentar.

Siguiendo esta línea de ideas, Reynoso y Seligson (2005) llegan a la conceptualización del estrés a un nivel psíquico denominándolo "estrés psicológico" definiéndolo como la relación particular que se da entre el sujeto y el entorno que es evaluado por él mismo como amenazante o que desborda sus recursos y pone en peligro su bienestar. Aquí mismo identifican dos elementos que complementan esta definición:

<u>Evaluación cognitiva</u>, la cual es un proceso que determina por qué y hasta qué punto una relación determinada o una serie de relaciones entre el individuo y el entorno es estresante.

<u>Afrontamiento</u>, que es el proceso a través del cual el individuo maneja las demandas de la relación individuo ambiente que evalúa como estresantes y las emociones que ello genera. (p. 51-52)

Esta comprensión del fenómeno da un acercamiento más claro a una posición psicológica en la conceptualización del mismo, evidenciando factores enriquecedores de relevancia dentro de éste. Otra definición un tanto más puntual es la que nos da Moiso (2007) donde define el estrés como una de las varias características de los determinantes sociales y lo conceptualiza haciéndolo ver cómo circunstancias estresantes, que hacen a las personas sentirse preocupadas, ansiosas e incapaces de superación, estas posibles circunstancias llegan a ser dañinas para la salud y pueden conducir a una muerte prematura. También deja ver que estas circunstancias prevalecen en mayor medida cuando el sujeto que las experimenta se encuentra en un bajo nivel de jerarquía social. En aspectos generales si un sujeto tiene vulnerabilidades socioeconómicas es

probable que experimente situaciones de estrés en mayor medida, éstas posiblemente derivadas de tales vulnerabilidades.

Continuando con la conceptualización del estrés Evans y Cohen (como se citó en Ortega, 2015) mencionan que el estrés es la consecuencia del desequilibrio entre las necesidades del sujeto y los atributos del ambiente y se refiere al proceso de respuesta ante situaciones demandantes, sobre estimulantes o amenazantes para el bienestar del individuo. En el mismo sentido Ortega (2015) retomando a Lazarus lo relaciona de la siguiente manera:

Lazarus (1990) bajo una perspectiva transaccional, plantea que el estrés no proviene ni del ambiente ni de la persona, sino que refleja la conjunción de la persona con ciertos motivos y creencias en un ambiente cuyas características ponen en situación de daño, amenaza o desafío al individuo de acuerdo a sus características personales. La transacción también implica procesos; es decir, las relaciones del estrés no son estáticas, sino que de forma constante cambian como resultado de un continuo interjuego entre la persona y su ambiente. (p.153)

Esta perspectiva deja ver la dinámica de las relaciones entre el sujeto y los posibles estresores, evidencia que éstas pueden variar dependiendo de las situaciones tanto ambientales como internas del sujeto y así mismo podrían variar las manifestaciones del fenómeno.

Por otro lado, cuando se piensa en las interacciones sujeto-ambiente, no se puede dejar de lado el aspecto social que rodea cada aspecto del ser humano, dado esto y enlazando con la problemática que aquí ocupa, la esfera social incide de ciertas maneras en el estrés, bien lo menciona Dean (como se citó en Hernandez, 2007), enmarcado en el apoyo social, como un factor causal tanto del fomento de la salud como de la prevención. Se plantea que las redes de apoyo social afectivas amortiguan el impacto del estrés sobre el bienestar psíquico del sujeto. Esta hipótesis parece enfocarse en la relevancia que el apoyo social tiene en la restauración de la salud, pero a su vez en la importancia que tiene en la prevención de afectaciones psicosomáticas.

En comparación, Antón y Mosquera (1997), dan un concepto de estrés un tanto más biologicista enmarcado en la medicina, profesión que ellos desempeñan, definen el estrés como un ataque agudo o mantenido de origen externo ante el cual el organismo pone en marcha toda

una cadena de recursos denominados *síndrome general de adaptación*. Frente a una situación grave el organismo reacciona doblemente a partir del hipotálamo. Existe una situación rápida, *reacción de alarma*, que se logra poniendo en marcha el aparato neurovegetativo por medio del sistema nervioso simpático que actúa sobre las vísceras; y posteriormente una *reacción de resistencia*, de instauración lenta pero más permanente, por medio del sistema *neuroendocrino*. Esto en gran medida da cuenta la posición biológica y a su vez denotando que el estrés, si bien es cierto, tiene una consecuencia a nivel psicológico, su origen es externo. Seguido a esto, Antón y Mosquera (1997) profundizando en los aspectos psicológicos del estrés y su impacto en el organismo, mencionan que este parece tener cuatro tipos de reacciones diferentes siendo estas:

Normal: en la que la alerta es seguida de una acción defensiva. **Neurótica:** en la que la alerta y la angustia son tan grandes que la defensa se transforma en ineficaz. **Psicótica:** en la que la alarma puede percibirse erróneamente produciendo una psicosis. **Psicosomática:** en la que fracasa la defensa psíquica y la alerta sobrecarga los sistemas somáticos provocando cambios hísticos. (p.223)

Lo anterior evidencia en buena manera la posible variedad de respuestas al estrés con un gran componente psicológico, pero es claro que esta posible gama de respuestas ya sean secuenciadas o no, depende de cómo el sujeto experimente el fenómeno y la significación que este le dé al estímulo estresor.

Continuando con la conceptualización del estrés, Salas y Álvarez (2008) definen el estrés como una reacción del organismo como consecuencia de una cadena de estímulos de diversa índole, la cual pone en actividad a los mecanismos fisiológicos, bioquímicos y psicológicos para preparar al individuo tanto para enfrentar una realidad adversa y aparentemente momentánea que lo obliga a actuar de inmediato, como para huir de ella. Esta definición fideliza su concepto como una respuesta del sujeto mediada por su organismo. Aquí también Salas y Álvarez (2008) precisan que la mayoría de psicólogos coinciden en que el estrés como respuesta presenta tres etapas, siendo estas: **Fase de alerta** (estado fisiológico), **Dinámica de respuesta** (estado psicológico primario) y **Cuadro de resolución**. La primera de éstas, menciona que el estado de alarma prepara física y psicológicamente al individuo para la huida o el ataque; es muy desgastantes. Si este estado de alerta se mantuviese por un tiempo determinado daría paso a la

segunda fase, mencionada como estado psicológico primario, la cual puede ser manifestada por el sujeto en conductas que pudiesen llegar a ser: miedo, angustia, pánico, agresividad y actitudes psicóticas como violencia extrema, homicidio o suicidio. En estas respuestas interviene el sistema neurovegetativo, tratando de auxiliar en la resolución de la situación mediante diversas conductas, pero si tal condición continúa y se repite constantemente, puede que el organismo manifieste agotamiento extremo y lesiones muy graves que lo pueden llevar a la muerte. La última etapa mencionada es la del cuadro de resolución, que se manifiesta en las conductas adaptativas que los sujetos emiten para lograr la homeostasis y de ser posible conservarla la mayor cantidad de tiempo.

Uno de los aspectos a destacar del estrés como respuesta comportamental en los sujetos puede darse a partir de lo planteado por el Gobierno de Canarias (2009), donde mencionaban la siguiente distinción:

Los hombres responden al estrés de forma menos saludable que las mujeres. Es más probable que empleen estrategias de afrontamiento de evitación (tales como negación, distracción y consumo aumentado de alcohol) y es menos probable que empleen estrategias de afrontamiento vigilantes y que reconozcan que necesitan ayuda. Contrariamente, los hombres pueden negar su malestar físico o emocional o intentar esconder sus enfermedades o discapacidades. (p.38)

Esto aclara un panorama que pudiese ser nuevo, al hacer una distinción en cuanto al sexo entre hombres y mujeres. A su vez se pudiese suponer que dentro de estas estrategias de afrontamiento pudiese estar; el cambio ya sea de cantidad o tipo de la alimentación, enriqueciendo y a la vez complejizando la dinámica del estrés en las diferentes esferas del sujeto.

También el mismo Gobierno de Canarias (2009), indica que "El estrés afecta a las mujeres más que a los hombres" (p.42). Sin embargo, esta premisa está sujeta al número de reportes, pues son las mujeres las que están casi siempre dispuestas a reconocerlo y buscar ayuda. Dado, que al parecer los hombres no contemplan la búsqueda de ayuda para afrontar la situación de estrés, los registros se ven menguados por esta misma situación. Es por esto, que la premisa de que las mujeres son quienes se ven afectadas en mayor medida por el estrés, no sería del todo objetiva si no se tiene en cuenta el número de los reportes del género masculino.

5. Marco Conceptual

López-Espinoza et al. (2012) menciona que para efectos de la comprensión y el acercamiento en modelos experimentales utilizados en la investigación del comportamiento alimentario se suelen dividir entre **inmediatos**, con efectos del estrés sobre la ingesta de alimento después de un periodo corto, e **históricos**, donde hay un periodo extenso entre el estrés y la evaluación del consumo. Dentro de estas categorías, el estrés pudiese ser clasificado como agudo, si es aplicado solamente una vez, o en su defecto crónico, si el sujeto ha sido repetidamente expuesto a los estresores o más allá de un periodo breve; en el caso del crónico puede a su vez clasificarse en inmediato e histórico, el primero hace referencia a los efectos del estrés sobre la conducta alimentaria en el corto plazo, mientras que el histórico señala que los efectos del estrés sobre la conducta alimentaria sólo serían evidentes en el largo plazo. La presente investigación se centra en el análisis del estrés crónico de tipo histórico y sus efectos en las ratas Wistar.

Dentro de la ciencia y la investigación básica es vital desarrollar una conciencia ética y quizás en mayor medida cuando se habla de estrés, para de esta manera proyectar los resultados que en las investigaciones se obtienen, es por ello que los procedimientos experimentales con humanos y animales deben ser cuidadosamente desarrollados y sustentar muy bien la ejecución del mismo desde una postura ética. Lo anterior se respalda en la indagación de las cualidades físicas y psicológicas de las cuales la ciencia tenga conocimiento según el modelo a usar en los procedimientos experimentales. El caso de la experimentación con estrés por ruido en ratas, es de gran importancia tener en cuenta los rangos de audición para de esta manera no incurrir en injuria alguna a los biomodelos, por esto Suckow et al. (2005) menciona que al igual que los humanos las ratas experimentan daño mecánico a 160 decibeles, dolor si se expone a intensidades acústicas alrededor de 140 decibeles y signos de daño en el oído interno si se les expone a 100 decibeles durante prolongados lapsos de tiempos.

A su vez tomando en cuento los apartados históricos López-Espinoza, A. (2007) en su estudio del análisis experimental de la conducta nos menciona que ya en los años veinte del siglo pasado autores investigaban en la alimentación como un proceso conductual, con el fin de fortalecer estudios médicos que pretendían favorecer proceso quirúrgicos y postoperatorios.

Entre esos estudios se encontraba el realizado por Richter en 1927 (como se citó en López-Espinoza 2007) en el cual determino que la conducta de alimentación en las ratas es mayormente nocturna y presenta una frecuencia de 5 a 6 veces en un lapso de 24 horas. Esto sentó las bases para los procedimientos experimentales en las siguientes décadas y abrió nuevas temáticas en la comprensión de la conducta alimentaria.

Por otro lado, Dos Santos (2012) hace un barrido historico de diferentes prodeciminetos experimentales desde la investigacion basica desarollados con base a la promematica del estrés, entre ellos menciona los hechos en ratas, como los de Selye en 1936, llegando a exponer a estos modelos diferentes condiciones nocivas como desacargas electricas, lesiones por cirujias e incluso ejercicio fisico excesivo y señala finalmente, que esto no ha cambiado ya que estos mismos estimulos estresores se siguen empleando, incluso en la modernidad para seguir resolviendo cuestionamientos mas profundos que subyasen al estrés como lo puede ser el impacto que este tiene en el sistema inmunitaro.

Ogden (2005) después de una completa recopilación y estudio de material bibliográfico referente a la relación entre el estrés y la alimentación, concluye mencionando la "paradoja del estrés y la comida", que ya otros autores como Stone y Brownell (como se citó en Ogden 2005) ya habían mencionado, esto dado que los resultados experimentales con animales y humanos son contradictorios, dado que en ambos casos; el estrés reduce la ingesta de comida pero también en otras ocasiones incrementa la ingesta de la misma. De igual forma Ogden (2005) menciona una posible hipótesis para la solución de esta paradoja. La cual responde al estudio de factores individuales como lo son él; género, régimen alimenticio y cambios fisiológicos. Ogden no cierra la puerta a estudiar algunos otros de estos factores individuales concluyendo: "La investigación se encuentra aún en sus primeras fases" (Ogden, 2005, p.64).

6. Diseño Metodológico

Como bien se enuncio en apartados anteriores el estrés puede conllevar efectos negativos en la salud del sujeto que lo llegase a experimentar, es por ello que este procedimiento experimental no se llevó cabo en humanos, en cambio se desarrolló en modelos animales, particularmente en ratas Wistar. Lo anterior dado que el trabajo con este modelo ha demostrado que sus resultados se asemejan a obtenidos en estudios con humanos. De igual forma el trabajo con este modelo facilito el manejo de variables tales como confinamiento prolongado en ambientes estandarizados para este tipo de procedimientos experimentales. Por otro lado, se da la relevancia ética que tiene el trabajo con los modelos animales, por ello se trabajó mancomunadamente con un Médico Veterinario especialista en trabajo con animales de laboratorio, el cual asesoró y vigiló muy de cerca el procedimiento en cada fase.

Este proyecto investigativo se desarrolló por medio de un diseño experimental que permite dar cuenta de los efectos del estrés como variable independiente en la conducta alimentaria como variable dependiente. Lo anterior se sustenta con lo planteado por Hernández-Sampieri (2014), donde nos menciona que los diseños de corte experimental se implementan cuando el investigador procura establecer posibles efectos de la causa que es manipulada.

Para este ejercicio experimental enmarcado desde la disciplina psicológica, se tomó como variable independiente al estrés, dado que la evidencia teórica demuestra que es esta varíale aquella que se considera como posible causa de cambios en patrones normales de la conducta. Por otro lado, la variable a medir fue el volumen de ingesta del alimento, esta variable fue la considerada como variable dependiente la cual no se manipuló dado que en ella hubo cambios a analizar. En este procedimiento se contó con dos grupos, un grupo el cual se expondrá a un estímulo experimental y otro el cual esta con ausencia de variable independiente el cual se denominó grupo control (Hernández-Sampieri, 2014).

La manipulación de la variable independiente y óptimo control de las variables extrañas dentro del procedimiento experimental dieron cuenta de la validez interna del mismo, por ello es preciso que la única diferencia entre el grupo experimental y el grupo control solo sea la exposición y la ausencia del estímulo respectivamente según los grupos. De esta forma como lo

menciona Hernández-Sampieri (2014) se puede asegurar que los efectos en la variable dependiente son a razón de la manipulación experimental de la variable independiente.

Para lo anterior y teniendo en cuenta el planteamiento de Hernández-Sampieri (2014) la validez interna denota el control en el procedimiento experimental y eso es posible siguiendo dos premisas fundamentales como lo es; el tener varios grupos de comparación el cual como mínimo deben ser dos y por último la equivalencia de estos grupos en todo, obviamente exceptuando la manipulación de la variable independiente.

Continuando con el diseño metodológico daremos cuenta que éste se constituyó como lo categoriza Hernández-Sampieri (2014) siendo éste un experimento "puro" en un diseño con preprueba-posprueba y grupo control, ya que tal diseño presenta dos cualidades que fueron de ventaja para este procedimiento experimental como lo son 1) conveniencia en grupo pequeños de estudio y 2) la posibilidad de análisis de puntuaciones entre la preprueba y las postprueba.

Para que el control de la variable independiente se facilite y las variables intervinientes sean casi que in-existentes, este procedimiento experimental se desarrolló en un ambiente controlado siendo este el laboratorio de psicología de la Fundación Universitaria Los Libertadores, puesto que como aduce Hernández-Sampieri (2014) los experimentos de laboratorio son aquellos en los que el efecto de todas o casi todas las variables independientes no correspondientes al problema de investigación se mantienen reducidas en lo más posible.

Dado que en este diseño experimental la variable independiente fué la inducción de estrés, el modelo para experimentar más adecuando en este caso resultó ser un modelo animal de fácil mantenimiento y manejo como lo es la Rata de sepa Wistar. Se trabajó con este modelo en su fase adulta de desarrollo, tanto hembras como machos en igual proporción.

Como primera fase del diseño experimental se procedió a un piloto donde se expuso durante 3 días, a una rata hembra escogida al azar a un estímulo auditivo aversivo durante su ciclo de actividad (foto periodo nocturno, 12 horas) en los cuales se determinó que el estímulo auditivo llegó ser un factor estresante sin generar lesiones auditivas. Después de terminar lo anterior se seleccionó al azar 6 ratas entre estas 3 hembras y 3 machos como grupo experimental y 6 ratas más, 3 hembras tres machos como grupo control, todas estas ratas adultas de 48 días de nacidas. El grupo experimental fue alojado en una sala acústicamente aislada durante 3 semanas de las

cuales se sometieron durante 2 semanas a un estímulo auditivo aversivo capaz de generar estrés, este estímulo se presentó durante las 12 horas de su foto periodo nocturno cuatro veces por hora para un total de 49 estímulos diarios.

Figura 1. Disposición locativa de grupo experimental en estantería; hembras acomodadas en el lado izquierdo, machos acomodados en el lado derecho.

Figura 2. Disposición locativa de grupo Control en estantería; hembras acomodadas en el lado izquierdo, machos acomodados en el lado derecho.

Los modelos animales usados en este procedimiento, como anteriormente se mencionó fueron ratas Wistar; 6 machos y 6 hembras de 48 días de edad, esto correspondiente a un periodo de adultez temprana. Se seleccionó este modelo animal por su facilidad en el manejo y manutención, garantizando así el mayor bienestar posible sin que la investigación se vea afectada.

Las fases de esta investigación estuvieron enmarcadas en la preprueba y la experimental que determinaron los tiempos de la misma, siento estos 7 días de preprueba en los cuales tanto en grupo control y el grupo experimental estarán sometidos a mediciones de sus niveles de ingesta alimentaria diariamente sin ningún tipo de estímulo, seguido de 14 días en los que igualmente se hizo un seguimiento diario de sus niveles de ingesta, en los cuales al grupo experimental se sometió a un estímulo aversivo durante la noche. Una vez se obtenidos los datos den los niveles de ingesta se procedió al análisis de los mismos desde la disciplina psicológica logrando un acercamiento a la comprensión del fenómeno bajo investigación.

Por último, para el óptimo registro de los resultados se dispuso de etiquetados a los biomodelos diferenciándolos entre hembras y machos y de igual forma haciendo la distinción entre grupo control y grupo experimental, la siguiente tabla ilustra dichas diferenciaciones.

Tabla 1

Rotulación de cada biomodelo en grupo experimental y grupo control.

EXPERIMENTAL		CONTROL		
Hembras	Machos	Hembras	Machos	
H16.2	M16.1	H16.5	M16.4	
H16.3	M16.2	H16.6	M16.5	
H16.4	M16.3	H16.7	M16.6	

Nota: Grupo experimental conformado por las hembras H16.2, H6.3 y H16.4, machos M16.1, M16.2 y M16.3. Grupo Control conformado por Hembras H16.5, H16.6 y H16.7, Machos M16.4, M16.5 y M16.6.

7. Técnicas e instrumentos

En este procedimiento experimental se dispondrán de 3 ratas hembras y 3 ratas machos en una cabina con aislamiento a acústico el cual se denomina como grupo experimental, a su ves 3 ratas hembras y 3 ratas machos en un bioterio el cual se denomina grupo control, tanto el bioterio como la cabina cuentan con los mismos estándares ambientales como lo es la temperatura la humedad he intensidad de la luz, los referente ambientales son tenido en cuenta según lo planteado por National Research Council (2011) donde mencionan que la temperatura ideal para el trabajo experimental con animales de laboratorio como las ratas Wistar es 20°C a 26°C con un rango de humedad relativa del 30% al 70%, en cuanto a la intensidad de la luz mencionan un umbral máximo de 325 luxes. A su vez los modelos animales de ambos grupos contaran con alimentación y agua ad libitum (a voluntad). Tanto en la fase de preprueba como experimental los modelos animales de ambos grupos serán sometidos mediciones diarias del volumen de ingesta de alimento y agua al igual se pesará su masa corporal y por último pesarán las excreciones fecales semanalmente, estas mediciones se realizarán en horas cercanas al medio día. Este procesamiento experimental se desarrollará en 21 días, de los cuales los primeros 7 días la fase de preprueba y los restantes 14 los días en los cuales se desarrollaron la fase experimental. Las mediciones de las variables evaluadas se registraron en una tabla diseñada para este fin (ver figura 3).

(2)	Los Libertadores			INSTITUCIÓN UNIVERSITARIA LOS LIBERTADORES LABORATORIO DE PSICOLOGÍA-IVÁN PAVLOV REGISTRO DE ACTIVIDADES SUPERVISIÓN ANIMALES						
Grupo N	9				Rata Nº					Labpsilib
MES			AÑO				•			
Dia	Hora	Peso Corporal	Residuo Aguan (ml)	Consumo Agua (ml)	Suministro Agua (ml)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	Observacio	nes:								

Figura 3. Tabla de registro diario.

Cabe mencionar que el alimento que se usará, será Laboratory Rodent Diet 5001, y solo se usara esta dieta en ambos grupos, este alimento es el más recomendado a nivel internacional ya que ha sido el estándar en investigaciones biomédicas por cerca de 70 años, de igual forma se empleará agua filtrada.

Durante el día 8 al 21 el grupo denominado experimental, será sometido a un estímulo auditivo aversivo correspondiente a un estruendo seco similar a objetos cayendo el cual tiene una duración total de 4 segundos, generando un sobresalto en lo biomodelos por inesperado sonido, ese estimulo auditivo se presentará cada 15 minutos a partir de las 8:00pm hasta las 8:00am coincidiendo exactamente con las 12 horas de oscuridad que corresponde a su fotoperiodo de actividad, en consecuencia serán un total de 49 repeticiones. Para estandarizar la intensidad sonora se debe tener en cuenta lo mencionado por National Research Council (2011) el cual menciona que un estímulo auditivo mayor a 85 decibeles llega a tener efectos conductuales relativos al estrés. El estímulo auditivo contará con una intensidad acústica de 110 decibeles,

emitido desde un altavoz tipo Subwoofer de 18 pulgadas el cual cuenta con 400 watts de potencia situado a 1 metro de distancia de la estantería donde se ubica el grupo experimental, en un lapso total de 12 horas, esta fase se desarrollará a partir de la segunda semana siendo este el día 8 y hasta finalizar el día 21 donde culminará la tercera semana. El grupo control en ningún momento será sometido a estímulos auditivos aversivos. Vale la pena aclarar que los dos grupos, tanto el experimental como el control estarán expuesto siempre a sonido ambiental que representa un rango de intensidad de 44 decibeles a 68 decibeles correspondientes a sistemas de aire acondicionado, apertura y cierre de puertas, dichos niveles de ruido no son lo suficientemente altos para general sobresaltos ni malestar alguno.

7.1 Procedimiento

A continuación de presentaran de forma secuencial las diferentes fases de la investigación expuesta en semanas.

Semana 1

En el primer día de esta semana se dispone el grupo experimental en la cabina previamente adecuada para procedimiento. El grupo control de adecua en el bioterio. Cada biomodelo de ambos grupos tiene acomodación individual en su propia caja de habitad y se disponen 2 cajas por cada nivel en la estantería. En ambos grupos se acomodan las 3 hembras a la izquierda de forma horizontal y los 3 machos a la derecha de forma igualmente vertical, ocupando en total de 3 niveles. Durante esa semana en ambos grupos se mide diariamente el volumen de ingesta en gramos, de igual forma se pesan los biomodelos diariamente registrando su peso en gramos. Por último, en el séptimo día de esta semana se realiza el cambio de encamando y se separan las heces para pesarlas y hacer registro de esto. El grupo experimental no es expuesto al estímulo auditivo durante esta semana, esto ya que esta semana constituye la fase de preprueba.

Semana 2

Durante esta se mantiene la disposición locativa de la semana anterior. De igual forma que la semana anterior en ambos grupos se mide diariamente el volumen de ingesta en gramos, a su vez se pesan los biomodelos diariamente registrando su peso en gramos. Por último, en el séptimo día de esta semana se realiza el cambio de encamando y se separan las heces para pesarlas y hacer registro de esto. En la primera noche de esta semana se le da comienzo a la exposición el grupo experimental al estímulo auditivo, el cual se presenta desde las 8:00pm a las 8:00am cada 15 minutos.

Semana 3

Durante esta se mantiene las disposiciones locativas de las semanas anteriores. De igual forma en ambos grupos se mide diariamente el volumen de ingesta en gramos, a su vez se pesan los biomodelos diariamente registrando su peso en gramos. En el séptimo día de esta semana se realiza el cambio de encamando y se separan las heces para pesarlas y hacer registro de esto de la misma forma que las semanas pasadas. En esta semana también se expone el grupo experimental al estímulo aditivo, el cual se presenta desde las 8:00pm a las 8:00am cada 15 minutos.

8. Resultados.

A continuación, se evidenciarán los resultados obtenidos en el desarrollo de la investigación, constatando los resultados entre los grupos equiparables: hembras grupo control versus hembras grupo experimental, machos grupo control versus machos grupo experimental y finalmente grupo control versus grupo experimental. De igual forma, las gráficas ilustrarán los resultados de cada una de los variables de la investigación, mientras los análisis por cada sección de comparación se presentarán al final de la misma.

8.1 Grupo control hembras Vs. Grupo experimental hembras

En este apartado se relacionan los resultados obtenidos en hembras de los grupos, control y experimental en cada una de las semanas.

Tabla 2 Resultados de hembras durante las tres semanas.

Grupo control hembras	Semana 1	Semana 2	Semana 3
X peso (g)	137,7	155,3	171,5
X Consumo de alimento (g)	14,9	14,8	15,9
X Consumo de agua (ml)	36,7	35,2	37,9
Heces fecales (g)	23,7	23,3	27,3
Grupo experimental hembras	Semana 1	Semana 2	Semana 3
X peso (g)	133,6	148,9	160,5
X Consumo de alimento (g)	14,6	14,7	14,8
X Consumo de agua (ml)	36	34	35,5
Heces fecales (g)	28,3	24,7	25,7

Nota: X= promedio; g= gramos; ml= mililitros.

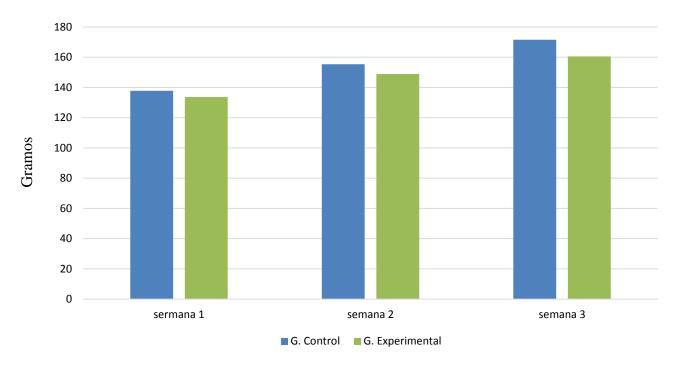


Figura 4. Promedio de **peso corporal en hembras** de grupo control (azul) y grupo experimental (verde) expresado en gramos durante las tres semanas.

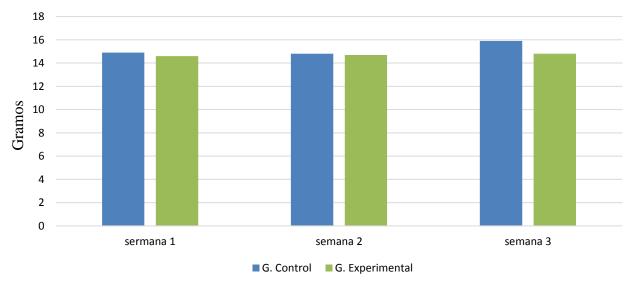


Figura 5. Promedio de **Consumo de alimento en hembras** de grupo control (azul) y grupo experimental (verde) expresado en gramos durante las tres semanas.

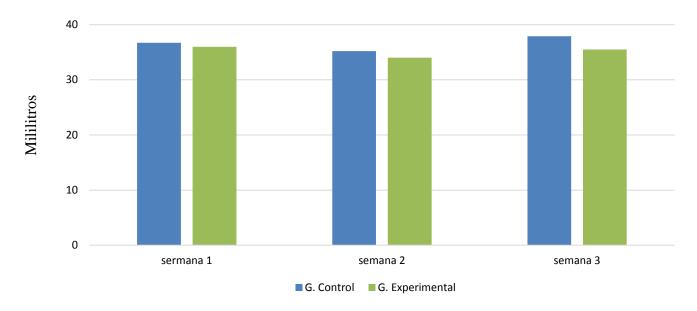


Figura 6. Promedio de **Consumo de agua en hembras** de grupo control (azul) y grupo experimental (verde) expresado en mililitros durante las tres semanas.

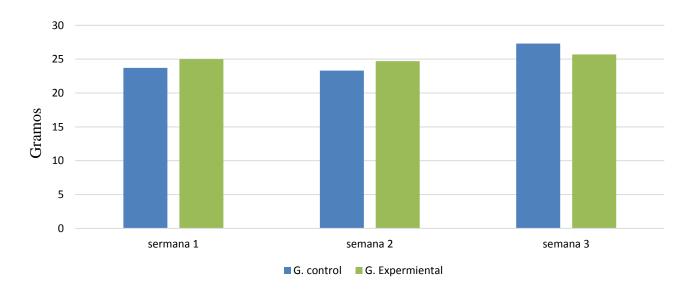


Figura 7. Excreción de heces en hembras de grupo control (azul) y grupo experimental (verde) expresado en mililitros durante las tres semanas.

En la tabla 2 se evidencia la similitud en los promedios de los pesos de los biomodelos siendo 137,7gr para las hembras del grupo control y 133,6 para las hembras del grupo experimental, dando una pequeña diferencia de 4.1g y vemos como a partir de la segunda semana esa diferencia se hace un tanto más grande llegando así a la tercera semana con una diferencia de 11gr con las hembras del grupo experimental por debajo del control, esta diferencia se puede evidenciar más claramente en la figura 4, de igual forma en la figura 5 se evidencia el promedio de consumo de comida, esta comparativa demuestra una mínima diferencia de menos de 1gr a lo largo de las tres semanas, situación que se repite en la figura 6 con el consumo de agua, se ve una diferencia máxima de un poco más de 2 mililitros para el caso de la tercera semana. En la figura 7 se ilustra la excreción fecal la cual pasado dos semanas de exposición al estímulo estresor muestra un revés para el caso de la hembra del grupo experimental.

Por lo anterior en el caso de las hembras se pudiese inferir que el estímulo estresor no tiene un impacto muy notorio en el volumen de ingesta dado que la diferencia es menor a un gramo, pero si vemos un impacto en el crecimiento y aumento de peso al comparar la curva de crecimiento con el grupo control ya que se ve un marcado ralentizaje que se pudiese apoyar en el cambio del patrón de excreción fecal, lo cual evidencia que si bien el estrés no impacta el volumen de ingesta de alimento, si pudiese impactar proceso propiamente físicos o metabólicos.

8.2 Grupo control machos Vs. Grupo experimental machos

En este apartado se relacionan los resultados obtenidos en machos de los grupos, control y experimental en cada una de las semanas.

Tabla 3 Resultados de machos durante las tres semanas.

Grupo control machos	Semana 1	Semana 2	Semana 3
X peso (g)	166,2	204,4	231,1
X Consumo de alimento (g)	18,6	20,8	20,2
X Consumo de agua (ml)	34,5	39	40,7
Heces fecales (g)	31,7	33,3	37,7
Grupo experimental machos	Semana 1	Semana 2	Semana 3
X peso (g)	170,5	200,5	220,6
X Consumo de alimento (g)	19,3	20,2	19,8
X Consumo de agua (ml)	43,1	46,7	45,2
Heces fecales (g)	32	33,3	36

Nota: X= promedio; g= gramos; ml= mililitros.

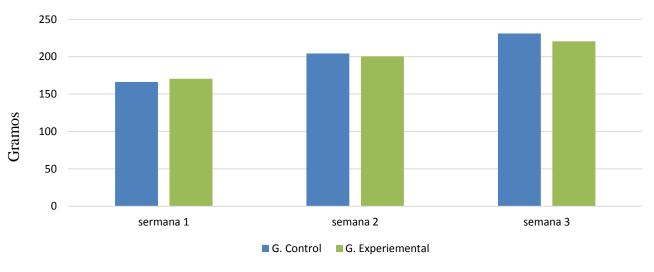


Figura 8. Promedio de **peso corporal en machos** de grupo control (azul) y grupo experimental (verde) expresado en gramos durante las tres semanas.

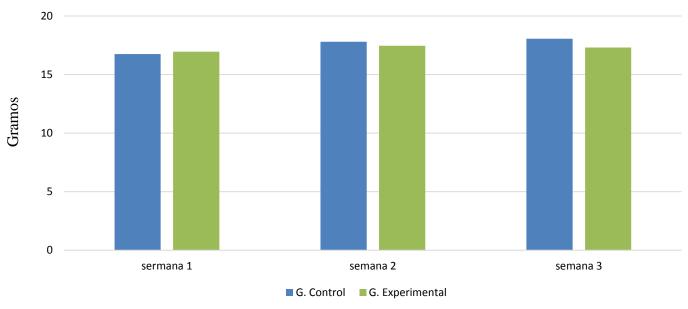


Figura 9. Promedio de **Consumo de alimento en machos** de grupo control (azul) y grupo experimental (verde) expresado en gramos durante las tres semanas.

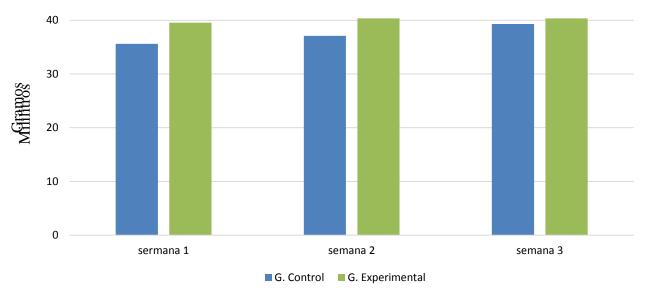


Figura 10. Promedio de **Consumo de agua en machos** de grupo control (azul) y grupo experimental (verde) expresado en mililitros durante las tres semanas.

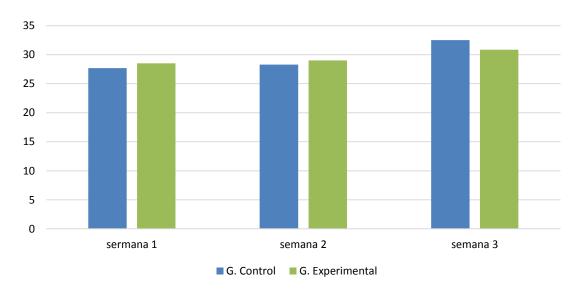
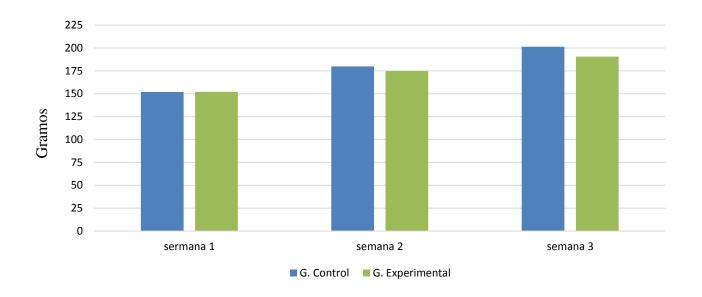


Figura 11. Excreción de heces en machos de grupo control (azul) y grupo experimental (verde) expresado en gramos durante las tres semanas.

La tabla 3 da cuenta de los promedios en las variables para los machos tanto del grupo control y del grupo experimental, se ve claramente en esta tabla que en la primera semana el grupo experimental contaba con un promedio de peso mayor que el grupo control con una diferencia de 4.3 gramos, diferencia que se perdió en la segunda semana ante la presencia del estímulo estresor, aunque al igual que el grupo experimental de hembras continuaba creciendo se evidencia un ralentizaje a en comparación al grupo control esto se puede ver de manera más clara en la figura 8. En cuanto al consumo de alimento la figura 9 muestra como ambos grupos de machos mantiene un consumo muy similar teniendo variaciones de menos de un gramo durante las tres semanas, en el caso del consumo de agua la figura 10 denota como grupo experimental tuvo un mayor consumo a comparación de del grupo control comenzando con una máxima diferencia de 8.6 mililitros en la primera semana, diferencia que en la segunda y tercera semana se hacía cada vez más corta. Por último, la figura 11 muestra claramente que en el caso de los machos se repite nuevamente el fenómeno anteriormente visto con las hembras mostrando que la excreción fecal en el grupo experimental es afectada por la del y superada grupo control, pero en un volumen mucho más bajo que en el caso de las hembras.

Por los resultados anteriormente mencionados es fácil evidenciar que el volumen de ingesta el alimento y agua mantienen unas constantes de relativo equilibrio y pudiésemos inferir al igual


que con el grupo de hembras que el estímulo estresor no incide en el consumo, pero al ver los datos del peso corporal y excreciones fecales se debe concluir que el estrés impacta a estos organismos a un nivel mucho más fisiológico.

8.3 Grupo control Vs. Grupo experimental

Las siguiente tablas e ilustraciones evidencian a nivel generales lo expuesto en los resultados anteriores comparando el grupo control completo entre machos y hembras con el grupo experimental igualmente completo.

Tabla 4 Resultados del grupo control y grupo experimental durante las tres semanas.

Grupo control general	Semana 1	Semana 2	Semana 3
X peso (g)	151,95	179,85	201,3
X Consumo de alimento (g)	16,75	17,8	18,05
X Consumo de agua (ml)	35,6	37,1	39,3
X Heces fecales (g)	27,7	28,3	32,5
Grupo experimental general	Semana 1	Semana 2	Semana 3
X peso (g)	152,05	174,7	190,55
X Consumo de alimento (g)	16,95	17,45	17,3
X Consumo de agua (ml)	39,55	40,35	40,35
X Heces fecales (g)	28,5	29	30,85

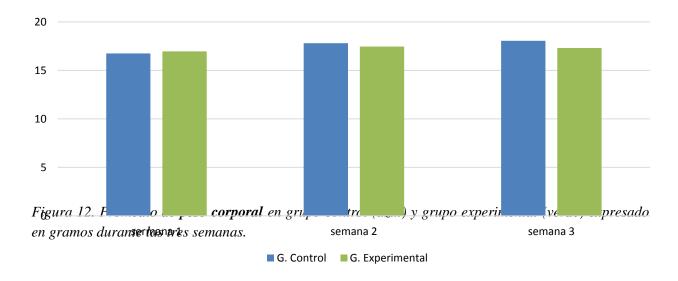


Figura 13. Promedio de **Consumo de alimento** de grupo control (azul) y grupo experimental (verde) expresado en gramos durante las tres semanas.

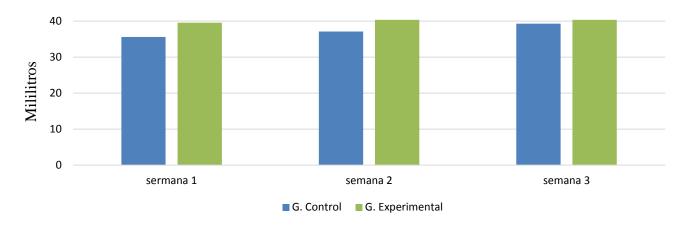


Figura 14. Promedio de **Consumo de agua** en grupo control (azul) y grupo experimental (verde) expresado en mililitros durante las tres semanas.

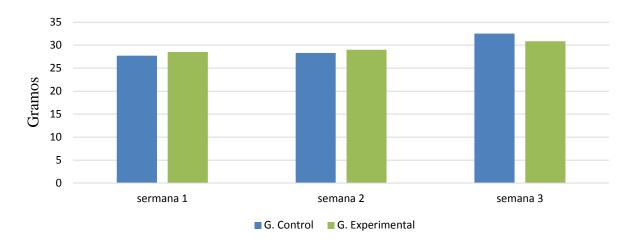


Figura 15. Excreción de heces en grupo control (azul) y grupo experimental (verde) expresado en gramos durante las tres semanas.

La tabla 4 muestra similitud en los valores iniciales entre el grupo control y el grupo experimental en cada una de las variables tenidas en cuenta. De igual forma las figuras 12, 13, 14

y 15 evidencian lo expuesto en los resultados de los apartados anteriores donde no se evidencia de manera sustancial una variación en volumen de ingesta de alimento ni agua, pero si se logra ver en la excreción fecal la cual tendía a la baja y una marcada variación en el peso corporal de 12 gramos para la tercera semana contra la diferencia de 10 miligramos que tenía en la primera semana. Lo anterior deja ver la dinámica entre el estrés y funciones orgánicas propias de los sujetos, de igual manera refuerza la ausencia de un impacto significativo en los niveles de consumo de alimento y agua.

9. Análisis y Discusión

Los resultados anteriormente expuestos dan luz a nuevas variables para la comprensión de las problemáticas en la conducta alimentaria y esto a su vez desdibuja la "paradoja de estrés y la comida" planteada por Ogden (2005) ya que esta investigación arrojó en cuando a volumen de ingesta un resultado neutro, en el cual no se evidencia un aumento o disminución de la ingesta de forma significativa, pero si una disminución en el peso y excreciones fecales. Lo anterior se le puede llegar a atribuir a los altos niveles de ansiedad y a un posible exceso de actividad física el cual conllevan un gasto calórico.

Dos Santos (2012) plantea que los resultados del impacto del estrés en la conducta alimentaria en ratas se puede diferenciar en dos vias, por un lado los estudios en los que las ratas son expuestas a estrés agudo causarían una disminucion en el cosumo de alimento, esto dado que los recursos de los animales estarían encaminados a huir de la situacion o estímulo que induce estrés. Por otro lado, menciona los estudios que inducen estrés cronico, estos llevarían a incrementar el consumo de comida, debido a las cualidades relajantes o placenteras que el alimento llega a tener.

Siguiendo esta ultima idea se llega a la conclucion de que existe un contraste en los resultados que se obtubieron es este estudio, ya que éste llego inducir un nivel crónico de estrés en el grupo experimental dado lo prologando del procedimineto, el tipo de estimulo estresor y demás condiciones que no permitian en gran medida un apaciguamineto del estrés experimentado. No se obtubieron los resultados que las referencias mencionan, ya que el verdadero impacto se da a nivel fisiológico en la disminucion de peso y no en el volumen de ingesta (ver figuras 12 y 13).

Continuando con los anterior si comparamos los resultados expuestos de los grupos experimentales entres machos y hembras (ver tablas 2 y 3) se puede ver de forma inicial una diferencia sustancial en cada una de las variables medidas (peso corporal, consumo de agua, consumo de alimento y excresión fecal), mostrando a los machos con valores mas altos que las hembras. Sin embargo, estas diferencias en los valores no son concluyentes en sí mismas; ya que los machos aunque con la misma edad de las hembras, tenían mayor peso corporal basal, presentando mayores valores en las diferentes variables desde el inicio del experimento. A su

vez, la variación en las medidas de los machos sigue una evolución muy similar en el tiempo a la que se observó en el grupo de hembras.

Por otro lado, se debe tener en cuenta los resultados obtenidos por Krebs, Macht, Weyers, Weijers y Janke (como se citó en Díaz-Reséndiz, Franco-Paredes, Martínez-Moreno, López-Espinoza y Aguilera-Cervantes, 2009) en los cuales después de exponer dos grupos de ratas a un estímulo auditivo de 55 decibeles se procedió se exponer a uno de estos grupo a 65 decibeles y el otro a 95 decibeles con el fin de inducir estrés y evaluar la latencia del consumo de alimento posterior al estímulo estresor, se concluyó que esta latencia de consumo de alimento en el grupo expuesto una intensidad acústica de 95 decibeles era mayor a la del grupo expuesto a 65 decibeles y de la misma forma el grupo expuesto a 95 decibeles presentaba una mayor tasa de defecación, pero en contaste a esto se evidenció que el volumen de alimentación era la misma entre los dos grupos.

Los resultados anteriormente expuestos llegan en cierta medida a coincidir con los resultados obtenidos en nuestra investigación donde si bien la variable de estudio no era la latencia de la conducta alimentaria, si lo era el volumen de ingesta de alimento. Siguiendo esto se hace claro la similitud de resultados en cuento a que el volumen de ingesta eventualmente no tiene afectación significativa, pero por otro lado, se ve un contraste en cuando a la tasa de defecación, donde el resultado aquí obtenido es contrario con una leve tendencia a la baja en comparación con el grupo control en el transcurso de las semanas (ver figura 15).

Siguiendo la premisa en mediciones de la emisión fecal, Monti, Bueno y Argibay (2012) en su estudio, el cual pretendía una evaluación de niveles ansiedad y estrés por nado forzado en ratas, procedieron a un conteo de bolos fecales durante el día de ensayo en diferentes grupos de ratas, sin llegar a conclusiones precisas ya que la variación de los resultados era significativa, y finalmente argumentando que esta forma de medición por sí sola no es muy concluyente y debe acompañarse de otras formas de mediciones como lo es la evaluación de corticosteroides plasmáticos.

Por lo anterior, lo resultados que se evidencian en esta investigación en materia de emisión (ver figura 15) no son del todo concluyentes y más si se tiene en cuenta que la medición del mismo se desarrolló al final de cada semana y pudiese ser que el peso de los bolos fecales se haya visto afectado por la deshidratación natural que sufren una vez son excretados.

Sin embargo, los resultados obtenidos en materia de peso corporal parte de la comparación del grupo experimental el grupo control (ver figura 12), no se planten como una pérdida de peso en sí, sino como una desaceleración en la curva de crecimiento que de haberse prolongado más días se habría hecho más notoria, y quizás así en comparación con un estado basal se pudiese denominar "pérdida de peso", lo cual trae a colación la variable tiempo, que para el caso de estrés crónico debe estudiarse a mayor detalle.

Esta investigación nació de la hipótesis, de si el estrés era capaz de afectar los volúmenes de ingesta de los alimentos de manera significativa y así verse relacionado con la pérdida o la ganancia de peso, pero los resultados aquí obtenidos dan cuenta que el impacto más significativo está en la pérdida de peso, aparentemente no relacionado con los volúmenes de ingesta. Por lo anterior es preferible dar un siguiente paso en investigaciones venideras relativas a esta temática, ya dejando de lado la variación significativa en el volumen de ingesta de alimento y pasar a evaluar la selección del alimento, al poder tener dietas diferenciales unas más paladeables que otras, acompañado de un desarrollo experimental más extenso que permita analizar más datos y poder dar cuenta de otros factores o incluso reevaluar si el tipo de estresor tiene un papel realmente determinante y llegar a medir de maneras más técnicas lo niveles de estrés experimentados, esto mediante la medición de la corticosterona ya sea plasmática, salival o en otros fluidos.

Esto abre un abanico de posibilidades dentro de la exploración investigativa, dado que los resultados no son del todo concluyentes y permiten a próximos estudios en esta línea de investigación explorar con nuevas variables y a su vez plantear nuevos cuestionamientos que den una óptica distinta a las problemáticas que la conducta alimentaria conlleva, que si bien no son

nuevas, son de relativa importancia en la actualidad para muchas disciplinas, entre ellas la psicología.

10. Referencias

- Antón Aparicio, L. M., & Mosquera Pena, M. (1997). impacto del cáncer en la dualidad individuo familia: fenómeno del big bang. En J. A. Florez, *La comunicación y comprensión del enfermo oncológico* (págs. 231-239). Madrid: Azprensa.
- Calvo Bruzos, S., & Sandoval Valdemoro, E. (1992). Alimentación y Nutrición. En S. Calvo Bruzos, *Educación para la Salud en la Escuela* (págs. 63-176). Madrid: Díaz de Santos.
- Camacho Gutiérrez, E., & Vega-Michel, C. (2012). Estrés por ruido. La mediación del comportamiento y su impacto en la salud: consideraciones teóricas y potenciales aplicaciones. En S. Galán Cuevas, & E. J. Camacho Gutiérrez, *Estrés y salud: investigación básica y aplicada* (págs. 45-58). Mexico D.C.: Manuel Moderno.
- Congreso de Colombia. (2009). Ley 1355 de 2009 Por medio de la cual se define la obesidad y las enfermedades crónicas no transmisibles asociadas a esta como una prioridad de salud pública y se adoptan medidas para su control, atención y prevención. Bogota D.C.: El Ministro de la Protección Social.
- Consejería para la Igualdad y Bienestar Social. (2005). *GUÍA para la promoción de la alimentación equilibrada en niños*. Sevilla: Consejería de Salud. Junta de Andalucía.
- Díaz-Reséndiz, F., Franco-Paredes, K., Martínez-Moreno, A., López-Espinoza, A., & Aguilera-Cervantes, V. (2009). Efectos de variables ambientales sobre la ingesta de alimento en ratas: una revisión histórico-conceptual. *Universitas Psychologica*, 519-532.
- Dos Santos, C. V. (2012). Investigación básica sobre estrés y sistema inmunitario. En S. Galán Cuevas, & E. J. Camacho Gutiérrez, *Estrés y salud: Investigación básica y aplicada* (pág. 19). México, D.F.: El Manual Moderno S.A.
- El Congreso de Colombia. (2006). LEY NÚMERO 1090 DE 2006 por la cual se reglamenta el ejercicio de la profesión de Psicología, se dicta el Código. Bogota D.C.: Ministerio de Proteccion Social.
- FAO; WFP; IFAD;. (2012). The State of Food Insecurity in the World 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger. Rome: FAO.

- Fundación Universitaria Los Libertadores. (1 de Mayo de 2016). *Nuestra Institución*. Recuperado de http://www.ulibertadores.edu.co/index.php/nuestra-institucion-interna/elecciones-representantes-2015
- Gobierno de Canarias. (2009). Genero y Salud. En G. d. Canarias, *Preparación a la maternidad* y paternidad: *Programa de atención a la salud afectivo-sexual y reproductiva* (*P.A.S.A.R.*) (págs. 33 43). Las Palmas de Gran Canaria: Gobierno de Canarias.
- Hernandez Melendrez, E. (2007). Apoyo Social y supervivencia Postrante Cardiaco. En E. Hernandez Melendrez, *Atencion psicologica en el Trasplante de Organos* (págs. 186-231). La Habana: Ciencias Medicas.
- Hernández-Sampieri, R. (2014). capitulo 5: Definición del alcance de la investigación que se realizará: exploratorio, descriptivo, correlacional o explicativo. En R. Hernández-Sampieri, *Metodologia de la investigacion 6ta edicion* (págs. 88-101). Mexico D.F.: McGRAW-HILL.
- Instituto Colombiano de Bienestar Familiar. (2010). *ENSIN-Encuesta Nacional de Situacion Nutricional en Colombia*. Bogota: Instituto Colombiano de Bienestar Familiar.
- López-Espinoza, A. (2007). Análisis experimental en conducta alimentaria. *Anales de Psicología*, 258-263.
- López-Espinoza, A., Martínez Moreno, A., Franco Paredes, K., Aguilera Cervantes, V., Cárdenas Villalvazo, A., Valdés Miramontes, E., . . . Diaz Rezendis, F. (2012). Estrés y comportamiento alimentario. Modelo bioconductual de estrés-alimentación. En S. Galán Cuevas, & E. J. Camacho Gutiérrez, *Estrés y salud: investigación básica y aplicada* (págs. 59-70). México, D.F.: El Manual Moderno.
- Ministerio de Salud. (30 de octubre de 1996). Resolucion Numero 3997. Bogota D.C.
- Moiso, d. (2007). Dterminantes d ela salud. En d. Moiso, M. d. Mestorino, O. A. Ojea, & H. L. Barragán, *Fundamentos de Salud Publica* (págs. 154-182). La Plata: Universidad Nacional de la Plata.
- National Research council. (2011). *Guide for the care and use of laboratory animals*. Washington: National Academies Press.
- Ogden, J. (2005). Estres y Comida. En J. Ogden, *Paicologia de la Alimnetacion* (págs. 60-63). Madrid: Morata.
- Ortega Andeane, P. (2015). Dimensión ambiental en la prevención de estrés en cuidadores

- primarios en salas de espera hospitalarias. En E. J. Camacho Gutiérrez, & S. Galán Cuevas, *Alternativas psicológicas de intervención en problemas de salud*. Mexico: El Manual Moderno.
- Osorio, J., Weisstaub, G., & Castillo, C. (2002). Desarrollo de la conducta alimentaria en la infancia y sus alteriaciones. *Revista chilena de nutrición*.
- Palencia, Y. (29 de Abril de 2016). *alimentación y salud claves para una buena alimentación*. Recuperado de: http://www.unizar.es/med_naturista/Alimentacion%20y%20Salud.pdf
- Peña Fernández, E., & Reidl Martínez, L. (2015). Las Emociones y la Conducta Alimentaria. Acta de Investigación Psicológica - Psychological Research Records, 2182-2194.
- Piña López, J. A., Ybarra Sagarduy, J. L., & Fierros, L. E. (2012). La conceptualización del fenómeno estrés en psicología y salud: su abordaje a la luz de un modelo de adhesión. En S. Galán Cuevas, & E. J. Camacho Gutiérrez, *Estrés y salud: investigación básica y aplicada* (págs. 14-27). Mexico: Manual Moderno.
- Real Academia Estañola. (2014). Estres. Recuperado de: http://dle.rae.es/?id=GzAga0a
- Reynoso Erazo, L., & Seligson Nisenbaum, I. (2005). Capitulo 7. El Modelos de Estres y Afrontamiento. En *Psicología clínica de la salud: un enfoque conductua* (págs. 51-53). Mexico: El Manual Moderno.
- Roca i Balasch, J. (2007). Conducta y Conducta. *Acta Comportamentalia: Revista Latina de Análisis de Comportamiento*, 33-43.
- Salas Cuevas, C.n.s.u. B., & Álvarez Arredondo, L. M. (2008). *Educación para la salud. Tercera edición*. Mexico: Pearson Educación.
- Sandín, B. (2003). El estrés: un análisis basado en el papel. *International Journal of Clinical and Health*, 141-157.
- Suckow, M. A., Weisbroth, S. H., & Franklin, C. L. (2005). The laboratory rat. Academic Press.

APÉNDICE

A continuación, se presenta los resultados diarios, tabulados por cada biomodelos en los diferentes grupos, teniendo en cuenta cada una de las variables como lo es el peso del biomodelo expresado en gramos, el consumo de agua consumida expresada en mililitros y de igual forma el consumo de comida consumida en gramos. De la misma forma se presentarán los promedios de cada una de las variables anteriormente enunciadas.

GRUPO CONTROL

Hembras

H16.5

Tabla 5 Resultados en Biomodelo H16.5 del grupo control durante los 21dias del procedimiento experimental.

	S	Semana 1	<u>[</u>				
Día	1	2	3	4	5	6	7
Peso (g)	120	130	130	123	133	140	144
Consumo de alimento (g)	10	14	16	11	15	16	15
Consumo de agua (ml)	20	40	35	10	35	30	25
	S	Semana 2	2				-
Día	8	9	10	11	12	13	14
Peso (g)	141	137	152	135	155	158	158
Consumo de alimento (g)	11	12	18	11	16	15	15
Consumo de agua (ml)	15	15	30	5	50	35	60
	S	Semana 3	3				
Día	15	16	17	18	19	20	21
Peso (g)	159	165	164	171	171	173	175
Consumo de alimento (g)	13	17	14	18	15	14	16
Consumo de agua (ml)	35	40	35	30	30	25	45

Nota: g= gramos; ml= mililitros.

Tabla 6 Promedio de resultados y medición de heces fecales en cada una de las semanas del Biomodelo H16.5

Variables	Semana 1	Semana 2	Semana 3
X peso (g)	131,4	148,0	168,3
X Consumo de alimento (g)	13,9	14,0	15,3
X Consumo de agua (ml)	27,9	30,0	34,3
Heces fecales (g)	21	22	28

Figura 16. **Peso corporal** diario del biomodelo H16.5



Figura 17. Resultados de Consumo de alimento diario del biomodelo H16.5

Figura 18. Resultados de Consumo de agua diario del biomodelo H16.5

H16.6

Tabla 7 Resultados en Biomodelo H16.6 del grupo control durante los 21dias del procedimiento experimental.

	S	Semana 1					
Día	1	2	3	4	5	6	7
Peso (g)	128	136	136	140	144	147	152
Consumo de alimento (g)	14	15	16	14	18	15	16
Consumo de agua (ml)	45	45	35	40	45	40	40
	S	Semana 2	2				
Día	8	9	10	11	12	13	14
Peso (g)	153	158	158	163	159	166	171
Consumo de alimento (g)	18	15	15	15	15	16	17
Consumo de agua (ml)	35	35	35	35	45	40	45
	S	Semana 3	3				
Día	15	16	17	18	19	20	21
Peso (g)	167	172	170	176	176	180	178
Consumo de alimento (g)	16	17	15	15	16	17	14
Consumo de agua (ml)	40	40	40	40	45	40	40

Nota: g= gramos; ml= mililitros.

Tabla 8 Promedio de resultados y medición de heces fecales en cada una de las semanas del Biomodelo H16.6

Variables	Semana 1	Semana 2	Semana 3
X peso (g)	140,4	161,1	174,1
X Consumo de alimento (g)	15,4	15,9	15,7
X Consumo de agua (ml)	41,4	38,6	40,7
Heces fecales (g)	25	24	28

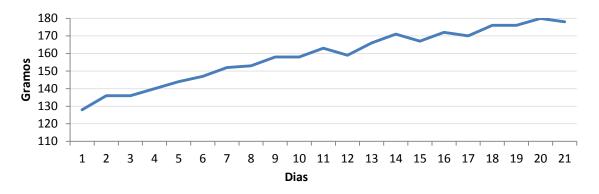


Figura 19. Peso corporal diario del biomodelo H16.6

Figura 20. Consumo de alimento diario del biomodelo H16.6

Figura 21. Consumo de agua diario del biomodelo H16.6

H16.7

Tabla 9 Resultados en Biomodelo H16.7 del grupo control durante los 21dias del procedimiento experimental.

	Semana 1									
Día	1	2	3	4	5	6	7			
Peso (g)	128	133	137	145	144	149	152			
Consumo de alimento (g)	14	16	17	14	16	15	16			
Consumo de agua (ml)	40	45	45	35	40	40	40			
	S	Semana 2	2							
Día	8	9	10	11	12	13	14			
Peso (g)	150	151	155	159	159	160	163			
Consumo de alimento (g)	15	15	13	16	15	12	15			
Consumo de agua (ml)	40	35	35	40	40	30	40			
	S	Semana 3	3							
Día	15	16	17	18	19	20	21			
Peso (g)	166	168	168	173	174	175	180			
Consumo de alimento (g)	20	14	14	16	17	16	19			
Consumo de agua (ml)	45	35	35	30	40	40	45			

Nota: g= gramos; ml= mililitros.

Tabla 10 Promedio de resultados y medición de heces fecales en cada una de las semanas del Biomodelo H16.7

Variables	Semana 1	Semana 2	Semana 3
X peso (g)	141,1	156,7	172,0
X Consumo de alimento (g)	15,4	14,4	16,6
X Consumo de agua (ml)	40,7	37,1	38,6
Heces fecales (g)	25	24	26

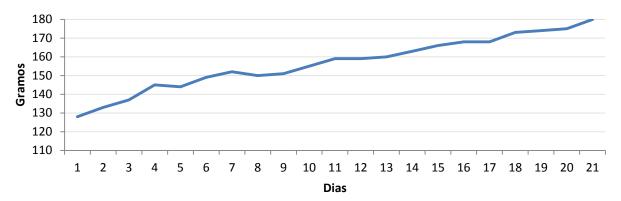


Figura 22. Peso corporal diario del biomodelo H16.7

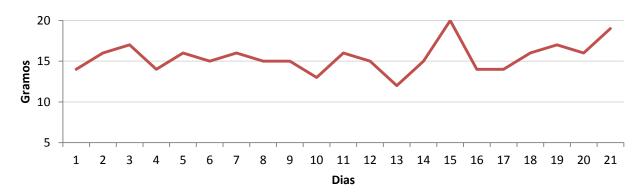


Figura 23. Consumo de alimento diario del biomodelo H16.7

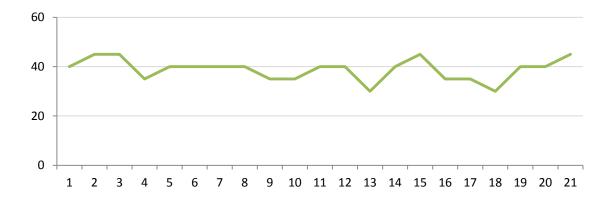


Figura 24. Consumo de agua diario del biomodelo H16.6

Machos

M16.4

Tabla 11 Resultados en Biomodelo M16.4 del grupo control durante los 21dias del procedimiento experimental.

	Semana 1									
Día	1	2	3	4	5	6	7			
Peso (g)	168	161	161	183	183	200	204			
Consumo de alimento (g)	15	13	15	17	21	23	23			
Consumo de agua (ml)	50	20	25	50	45	50	45			
	S	Semana 2	2							
Día	8	9	10	11	12	13	14			
Peso (g)	196	213	219	227	230	235	240			
Consumo de alimento (g)	16	22	22	24	21	24	23			
Consumo de agua (ml)	25	45	45	45	45	40	45			
	S	Semana 3	3				_			
Día	15	16	17	18	19	20	21			
Peso (g)	196	213	219	227	230	235	240			
Consumo de alimento (g)	16	22	22	24	21	24	23			
Consumo de agua (ml)	25	45	45	45	45	40	45			

Nota: g= gramos; ml= mililitros.

Tabla 12 Promedio de resultados y medición de heces fecales en cada una de las semanas del Biomodelo M16.4

Variables	Semana 1	Semana 2	Semana 3
X peso (g)	180,0	222,9	253,0
X Consumo de alimento (g)	18,1	21,7	22,6
X Consumo de agua (ml)	40,7	41,4	42,9
Heces fecales (g)	33	34	40

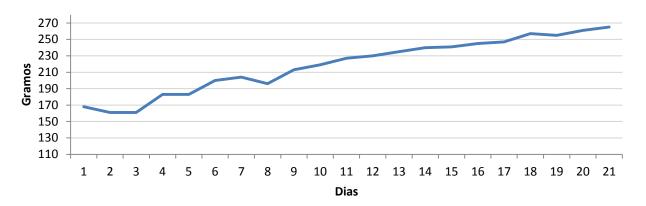


Figura 25. Peso corporal diario del biomodelo M16.4

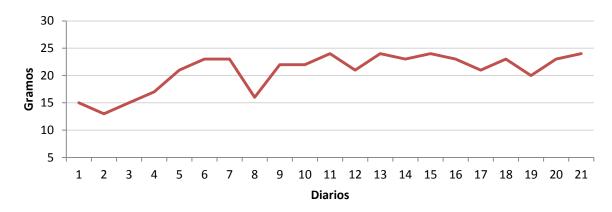


Figura 26. Consumo de alimento diario del biomodelo M16.4

Figura 27. Consumo de agua diario del biomodelo M16.4

M16.5

Tabla 13 Resultados en Biomodelo M16.5 del grupo control durante los 21dias del procedimiento experimental.

	Semana 1									
Día	1	2	3	4	5	6	7			
Peso (g)	141	145	151	162	164	168	176			
Consumo de alimento (g)	17	21	20	17	18	19	22			
Consumo de agua (ml)	30	25	45	25	30	30	35			
	S	Semana 2	2							
Día	8	9	10	11	12	13	14			
Peso (g)	180	184	186	194	198	206	203			
Consumo de alimento (g)	20	19	18	20	20	21	21			
Consumo de agua (ml)	30	30	35	40	25	40	35			
	S	Semana 3	3							
Día	15	16	17	18	19	20	21			
Peso (g)	206	209	209	214	215	218	220			
Consumo de alimento (g)	19	19	18	20	19	16	19			
Consumo de agua (ml)	45	35	30	30	45	45	40			

Nota: g= gramos; ml= mililitros.

Tabla 14 Promedio de resultados y medición de heces fecales en cada una de las semanas del Biomodelo M16.5.

Variables	Semana 1	Semana 2	Semana 3
X peso (g)	180,0	222,9	253,0
X Consumo de alimento (g)	18,1	21,7	22,6
X Consumo de agua (ml)	40,7	41,4	42,9
Heces fecales (g)	33	34	40

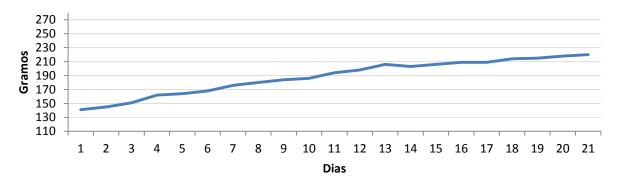


Figura 28. Peso corporal diario del biomodelo M16.5

Figura 29. Consumo de alimento diario del biomodelo M16.5

Figura 30. Consumo de agua diario del biomodelo M16.5

M16.6

Tabla 15 Resultados en Biomodelo M16.6 del grupo control durante los 21dias del procedimiento experimental.

	Semana 1									
Día	1	2	3	4	5	6	7			
Peso (g)	158	155	154	164	163	165	164			
Consumo de alimento (g)	25	18	18	18	19	14	18			
Consumo de agua (ml)	55	30	35	30	15	25	30			
	S	Semana 2	2							
Día	8	9	10	11	12	13	14			
Peso (g)	164	189	194	204	204	212	215			
Consumo de alimento (g)	14	22	22	22	21	22	23			
Consumo de agua (ml)	15	55	45	50	45	40	45			
	S	Semana 3	3							
Día	15	16	17	18	19	20	21			
Peso (g)	217	216	223	231	232	238	234			
Consumo de alimento (g)	21	20	19	20	22	18	17			
Consumo de agua (ml)	40	45	30	40	45	45	40			

Nota: g= gramos; ml= mililitros.

Tabla 16
Promedio de resultados y medición de heces fecales en cada una de las semanas del Biomodelo M16.6

Variables	Semana 1	Semana 2	Semana 3
X peso (g)	160,4	197,4	227,3
X Consumo de alimento (g)	18,6	20,9	19,6
X Consumo de agua (ml)	31,4	42,1	40,7
Heces fecales (g)	29	33	40

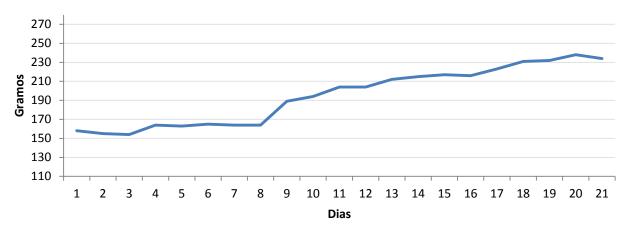


Figura 31. **Peso corporal** diario del biomodelo M16.6

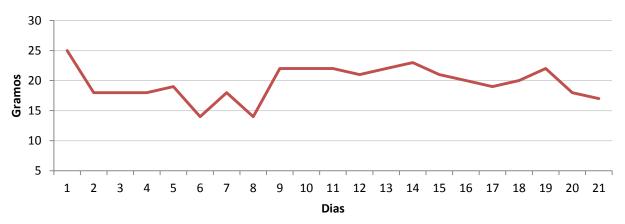


Figura 32. Consumo de alimento diario del biomodelo M16.6

Figura 33. Consumo de agua diario del biomodelo M16.6

GRUPO EXPERIMENTAL

HEMBRAS

H16.2

Tabla 17 Resultados en Biomodelo H16.2 del grupo experimental durante los 21dias del procedimiento experimental.

	S	Semana 1	L								
Día	1	2	3	4	5	6	7				
Peso (g)	122	118	127	133	134	138	139				
Consumo de alimento (g)	13	17	14	15	15	14	14				
Consumo de agua (ml)	45	25	35	40	45	50	40				
	Semana 2										
Día	8	9	10	11	12	13	14				
Peso (g)	138	139	146	148	150	153	153				
Consumo de alimento (g)	13	12	15	14	16	16	13				
Consumo de agua (ml)	40	30	40	35	35	35	40				
	S	Semana 3	3								
Día	15	16	17	18	19	20	21				
Peso (g)	157	158	160	164	169	168	168				
Consumo de alimento (g)	18	15	13	15	17	16	15				
Consumo de agua (ml)	30	30	31	30	40	50	40				

Nota: g= gramos; ml= mililitros.

Tabla 18 Promedio de resultados y medición de heces fecales en cada una de las semanas del Biomodelo H16.2

Variables	Semana 1	Semana 2	Semana 3
X peso (g)	130,1	146,7	163,4
X Consumo de alimento (g)	14,6	14,1	15,6
X Consumo de agua (ml)	40,0	36,4	35,9
Heces fecales (g)	25	24	28

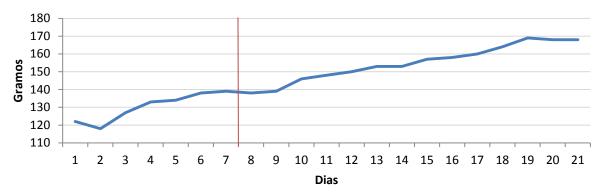


Figura 34. **Peso corporal** diario del biomodelo H16.2, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

Figura 35. Consumo de alimento diario del biomodelo H16.2, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

Figura 36. **Consumo de agua** diario del biomodelo H16.2, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

H16.3

Tabla 19 Resultados en Biomodelo H16.3 del grupo experimental durante los 21dias del procedimiento experimental.

	S	Semana 1	[
Día	1	2	3	4	5	6	7				
Peso (g)	125	126	132	134	136	138	140				
Consumo de alimento (g)	16	13	13	18	10	17	14				
Consumo de agua (ml)	40	35	30	35	35	40	40				
	Semana 2										
Día	8	9	10	11	12	13	14				
Peso (g)	141	148	146	145	150	154	156				
Consumo de alimento (g)	15	16	14	13	16	17	14				
Consumo de agua (ml)	35	40	25	45	30	35	40				
	S	Semana 3	3								
Día	15	16	17	18	19	20	21				
Peso (g)	153	156	160	164	167	163	165				
Consumo de alimento (g)	12	15	17	16	15	13	16				
Consumo de agua (ml)	30	35	45	40	45	50	45				

Nota: g= gramos; ml= mililitros.

Tabla 20 Promedio de resultados y medición de heces fecales en cada una de las semanas del Biomodelo H16.3

Variables	Semana 1	Semana 2	Semana 3
X peso (g)	133,0	148,6	161,1
X Consumo de alimento (g)	14,4	15,0	14,9
X Consumo de agua (ml)	36,4	35,7	41,4
Heces fecales (g)	25	24	27

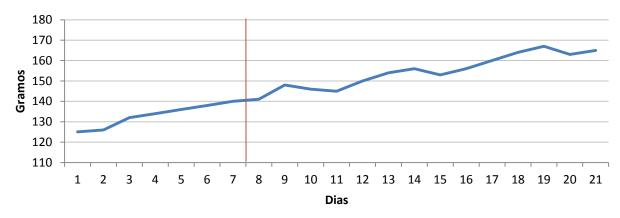


Figura 37. **Peso corporal** diario del biomodelo H16.3, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

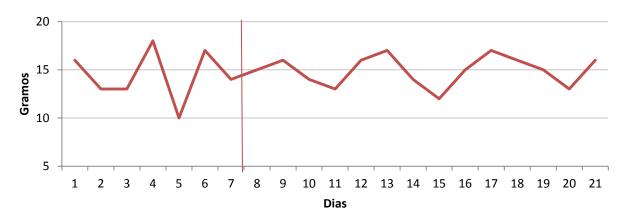


Figura 38. **Consumo de alimento** diario del biomodelo H16.3, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

Figura 39. **Consumo de agua** diario del biomodelo H16.3, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

H16.4

Tabla 21 Resultados en Biomodelo H16.4 del grupo experimental durante los 21dias del procedimiento experimental.

	S	Semana 1	[
Día	1	2	3	4	5	6	7
Peso (g)	130	131	136	138	139	144	146
Consumo de alimento (g)	14	15	15	14	14	17	15
Consumo de agua (ml)	25	30	30	35	30	35	35
	S	Semana 2	2				
Día	8	9	10	11	12	13	14
Peso (g)	145	149	150	152	155	155	154
Consumo de alimento (g)	14	14	14	15	15	16	16
Consumo de agua (ml)	30	35	30	30	25	25	35
	S	Semana 3	3				
Día	15	16	17	18	19	20	21
Peso (g)	155	157	155	158	158	158	158
Consumo de alimento (g)	14	16	15	11	13	13	16
Consumo de agua (ml)	30	25	20	25	30	35	40

Nota: g= gramos; ml= mililitros.

Tabla 22 Promedio de resultados y medición de heces fecales en cada una de las semanas del Biomodelo H16.4

Variables	Semana 1	Semana 2	Semana 3
X peso (g)	137,7	151,4	157,0
X Consumo de alimento (g)	14,9	14,9	14,0
X Consumo de agua (ml)	31,4	30,0	29,3
Heces fecales (g)	25	26	22

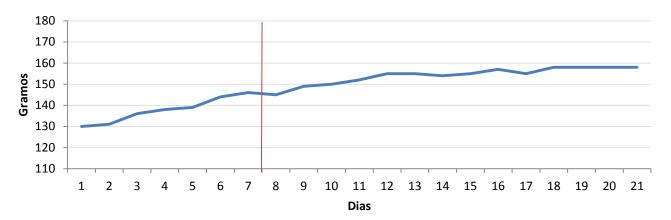


Figura 40. **Peso corporal** diario del biomodelo H16.4, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

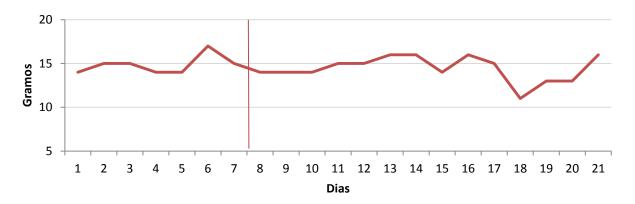


Figura 41. **Consumo de alimento** diario del biomodelo H16.4, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

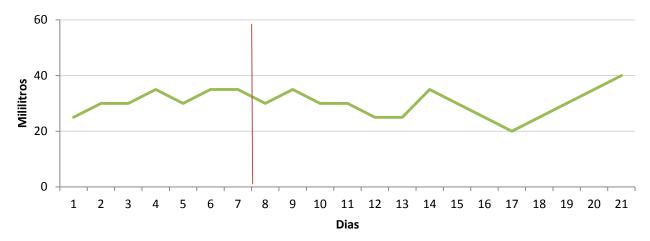


Figura 42. **Consumo de agua** diario del biomodelo H16.4, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

MACHOS

M16.1

Tabla 23 Resultados en Biomodelo M16.1 del grupo experimental durante los 21dias del procedimiento experimental.

	S	Semana 1	[
Día	1	2	3	4	5	6	7
Peso (g)	164	171	173	183	185	191	195
Consumo de alimento (g)	20	18	20	21	18	19	19
Consumo de agua (ml)	45	50	45	45	40	50	45
	S	Semana 2	2				
Día	8	9	10	11	12	13	14
Peso (g)	196	204	205	209	213	218	221
Consumo de alimento (g)	16	20	19	19	21	22	19
Consumo de agua (ml)	45	45	40	50	45	50	50
	S	Semana 3	3				
Día	15	16	17	18	19	20	21
Peso (g)	224	229	229	236	239	236	235
Consumo de alimento (g)	21	22	19	21	20	15	17
Consumo de agua (ml)	55	45	30	45	50	55	50

Nota: g= gramos; ml= mililitros.

Tabla 24 Promedio de resultados y medición de heces fecales en cada una de las semanas del Biomodelo M16.1

Variables	Semana 1	Semana 2	Semana 3
X peso (g)	180,3	209,4	232,6
X Consumo de alimento (g)	19,3	19,4	19,3
X Consumo de agua (ml)	45,7	46,4	47,1
Heces fecales (g)	32	31	37

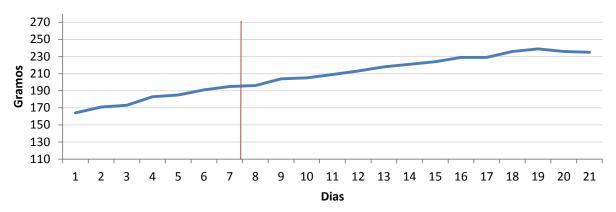


Figura 43. **Peso corporal** diario del biomodelo M16.1, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

Figura 44. **Consumo de alimento** diario del biomodelo M16.1, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

Figura 45. **Consumo de agua** diario del biomodelo M16.1, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

M16.2

Tabla 25 Resultados en Biomodelo M16.2 del grupo experimental durante los 21dias del procedimiento experimental.

	S	Semana 1	[
Día	1	2	3	4	5	6	7
Peso (g)	151	159	163	168	174	177	183
Consumo de alimento (g)	19	18	20	18	20	19	23
Consumo de agua (ml)	45	35	45	50	45	45	45
	S	Semana 2	2				
Día	8	9	10	11	12	13	14
Peso (g)	185	190	194	196	195	202	203
Consumo de alimento (g)	23	21	20	20	20	20	19
Consumo de agua (ml)	50	45	40	45	35	50	50
	S	Semana 3	3				
Día	15	16	17	18	19	20	21
Peso (g)	204	209	206	209	206	207	208
Consumo de alimento (g)	22	24	19	19	16	13	19
Consumo de agua (ml)	45	35	30	40	40	50	45

Nota: g= gramos; ml= mililitros.

Tabla 26 Promedio de resultados y medición de heces fecales en cada una de las semanas del Biomodelo M16.2

Variables	Semana 1	Semana 2	Semana 3
X peso (g)	167,9	195,0	207,0
X Consumo de alimento (g)	19,6	20,4	18,9
X Consumo de agua (ml)	44,3	45,0	40,7
Heces fecales (g)	31	33	34

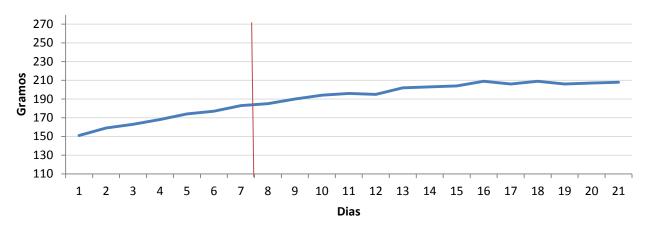


Figura 46. **Peso corporal** diario del biomodelo M16.2, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

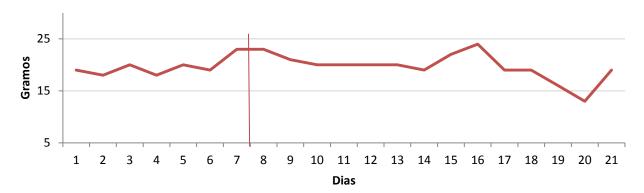


Figura 47. **Consumo de alimento** diario del biomodelo M16.2, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

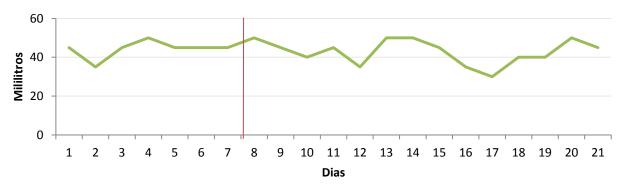


Figura 48. **Consumo de agua** diario del biomodelo M16.2, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

M16.3

Tabla 27 Resultados en Biomodelo M16.3 del grupo experimental durante los 21 días del procedimiento experimental.

	S	Semana 1	[
Día	1	2	3	4	5	6	7
Peso (g)	145	150	158	163	174	174	180
Consumo de alimento (g)	16	18	18	19	21	20	22
Consumo de agua (ml)	30	35	35	40	35	50	50
	S	Semana 2	2	•	•	•	
Día	8	9	10	11	12	13	14
Peso (g)	183	188	189	199	203	207	211
Consumo de alimento (g)	21	19	20	22	21	20	22
Consumo de agua (ml)	65	50	45	55	35	45	45
	S	Semana 3	3				
Día	15	16	17	18	19	20	21
Peso (g)	213	218	220	229	227	224	225
Consumo de alimento (g)	27	25	20	20	21	15	21
Consumo de agua (ml)	35	45	45	45	60	55	50

Nota: g= gramos; ml= mililitros.

Tabla 28 Promedio de resultados y medición de heces fecales en cada una de las semanas del Biomodelo M16.3

Variables	Semana 1	Semana 2	Semana 3
X peso (g)	163,4	197,1	222,3
X Consumo de alimento (g)	19,1	20,7	21,3
X Consumo de agua (ml)	39,3	48,6	47,9
Heces fecales (g)	33	36	37

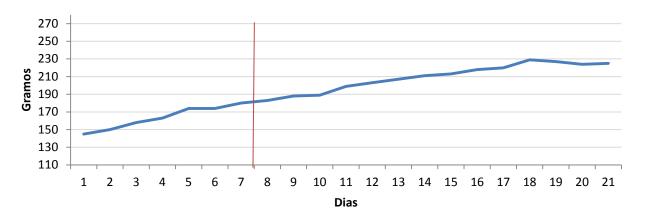


Figura 49. **Peso corporal** diario del biomodelo M16.3, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

Figura 50. Consumo de alimento diario del biomodelo M16.3, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

Figura 51. **Consumo de agua** diario del biomodelo M16.3, la línea vertical demarca el momento en el cual se comenzó la exposición al estímulo estresor.

Registros

Grupo control

o N		Control			Rata Nº	H16.5		Ĺ	abpsilib		
		oct-nov	ANO 2016			11102					
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	24	3:26pm	123			125m)	_	_	399	25%	Sender
	25	11:51 Am		105 ml	20m1	125ml	209	109	309	25%	Sand H
	28	11:53 Am	130	85m)	40ml	125ml	16,	149	339	52%	Sonde
	27	12:46pm	130	90 M	35ml	125-1	179	169	339	25.1.	Sande
	28	11:55	123	115ml	loml	125-1	22	119	31	25%	Sandra
	29	11:32	133	gaml	35-21	125mg	165	159	339	25%	Sarda
	30	117.14	140	95~1	30-1	12501	175	169	359	75%	Gwin"
	31	11:36	144	10001	25~1	12501	709	159	365	25'/.	guns
					Grand Marie						
	1										
					9						-
	Observaci	ones: 5e-	1	: Es-	s feedly	421					

Figura 51. Registro diario del biomodelo H16.5, del 24 al 31 de octubre, semana 1.

Grupo Nº Control		1		Rata Nº	H165		Labpsitib				
NES		nov.	AÑO				1.00				
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	1	12:37	144	110ml	15m1	125001	25	119	359	25%	Smark
	2	11:44	137	llan	15~1	125~1	23	17.5	343	25%	Gard
	3	11:18	152	95~1	30M	125mi	169	189	385	78%	Sante
	4	12:10	135	1200	Sml	1251	79	119	344	25%	Sord-
,	5	1:58	155	75m1	Soml	12501	189	169	399	25%	Senda
	6	11:12	158	gomi	3501	12500)	749	15%	409	Ss.1.	Sord
	7	11:10	158	95-1	30ml	125-1	259	159	405	52.1	Samo
	Observac	iones: 5 e	mere	z! Es	->> Fac	125 8	25			-	

Figura 52. Registro diario del biomodelo H16.5, del 1 al 7 de noviembre, semana 2.

rupo N	•	(antio)			Rata Nº	H16.5		L	ibpsilib		
IES		oct-n	AÑO								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	8	1:17	159	90mi	35~	125~	28-4	1301	HO	25%	Cand
	9	1:40	165	85-1	yon	1250	235	1201	41	28%	Cost
	10	1:50	164	Q Am	35-1	1254	27	149	41	75%	Somby
	11	11:15	171	95-1	30~1	125	23	189	43	(8)	Some
	12	11:34	171	95~1	3001	125	28	159	43	25%	Sur
	13	1124	143	100m	25-1	(25-	29	149	43	25%	922
	14	11:42	175	(DON)	457	125	77	163	44	257	an
							1				
							1779				
	7.50	1000		Countries?			lana.				
											4.55
	Observac	iones: Se	nan.	3 Es	-s Fac	ales	28	3			
			7	/ //	, , ,					- 1	

Figura 53. **Registro** diario del biomodelo H16.5, del 8 al 14 de noviembre, semana 3.

rupo l	18	control			Rata Nº	H16.6		L	ibpsilib		
ES		oct-nov	ANO 2016								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	24	3:35	121			15ml	-		309	25%	Bonders
	25	11:5900	128	8 aml	45ml	125ml	169	149	329	25%	Sander S
	26	11:570	136	Bon	USml	125ml	179	159	349	25 %.	Scalare
	27	17:52 Am	136	90ml	35ml	125-1	189	169	349	8%	sandra
•	78	12:00	140	95001	30001	125~1	209	149	355	25%	Sand of
	24	11:41	144	850	4001	[2500]	199	189	369	25%	Sual 8
	30	11:18	147	800)	452	125 m)	219	159	375	75%	Sordal
	31	11:42	152	85~	4001	125-1	23	165	385	25.1.	Som
						14.68					
	9867	1000							1.00		
			,	- E1.	Ference	W0.5					
	Observaci	ones: 5 e~	an I	- LSes	fect no	1405			IL CAUTION		

Figura 54. **Registro** diario del biomodelo H16.6, del 24 al 31 de octubre, semana 1.

irupo N	9	(anctro)			Rata Nº	H16.16		L	abpsilib		
MES		ost-nov	AÑO								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	1	17:42	153	Imap	35-1	125-	205	200 18.	38	75%	mode
	7	11:48	158	10001	35-1	12501	23cm	159	40	7.85	50 ct
	3	35:11	158	gans	35~1	12501	259	159	40	25-	Samors
	p4	1215	163	gon	35~1	1250	75.9	159	41	25-1.	Sandry
,	5	1:34	159	90-1	4500)	12521	269	159	40	25.1.	South
	6	11:17	166	8571	your	125-1	749	169	42	28.4	Servi
	7	11:27	171	80-1	45-1	1250)	755	179	43	25%	South
		1 0 TO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
			4								
,											
		_			Feedlay!						

Figura 55. Registro diario del biomodelo H16.6, del 1 al 7 de noviembre, semana 2.

rupo N	lā.	Contan			Rata Nº	H)6.6	19,20	L	abpsitib		
IES		nov	AÑO								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	9	1:50	167	95mm)	Yon	125	27	165	42	75%	gund
	9	1:45	172	85~1	400	125-1	28	175	43	28%	Scral
	10	1:23	170	85~1	hom	1250	28	159	43	25%	Sand
	11	11:17	176	05-1	400-1	1250	28	159	44	2%	Ben
	12	11:44	176	@on1	45-1	125	28	16.9	44	25%	and
	13	11:27	180	89~	Gon	125n	27	129	45	25%	om
	19	11:58	178	857	104	1850	31	149	45	25%	m
							1				
					7						
	-										
					9					I I I I I I I I I I I I I I I I I I I	
				2 -		-		26			
	Observac	iones:	ANK VY	5 t	Ses	TE Cal	15	18		- 1	

Figura 56. Registro diario del biomodelo H16.6, del 8 al 14 de noviembre, semana 3.

rupo N	16	Control			Rata Nº	H16.7		La	bpsilib		
ES		oct-nov	AÑO 2016								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	24	3:44	1254	-		125ml	-		319	25%	sondess
	25	12:05	283 '28	85-1	40ml	125ml	179	149	329	25./-	Sandais
	20	12:00mc		8001	45001	12501	169	169	339	25%	Scrober's
	22	12:55m1	137	9001	4501	125.1	169	179	349	25%	Sandel
	79	12:04	145	9001	35-1	12501	203	149	365	25%	Sentis
	29	11:47	144	Gem1	40ml	125-	1203	169	369	25%	Sadel 6
	30	11:25	149	85~1	yon	125 %	219	159	379	25%	Sources
	31	11:45	152	85-7	400	125 21	715	169	383	75%	Sandar

Figura 57. Registro diario del biomodelo H16.7, del 24 al 31 de octubre, semana 1.

Grupo N	9	Contra			Rata Nº	H16.2		E.	abpsilib		
MES		g/nov	AÑO							-	
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	ι	12:50	150.	8571	4001	125-1	234	159	385	25%.	imi
	2	11:51	151	9000)	35~1	12 Sm1	735	159	389	25%	Gonda
	3	11 25	155	gon	35-1	125-1	25	135	39	25%	Sorohos
	9	15:50	159	0,5-11	4001	125-1	23	169	40	25%	Sand"
	4	12:25		Boot	-4501	12504	31	9			
	5	1:32	159	85m1	hons	125-	25	159	40	251/.	gendas
	6	11:20	160	95-1	30ml	125m)	28	125	40	25-6	Sandin
	7	11:49	163	Q15~1	Lions	125-	25	155	41	25.1	Servin
											#
						-					
	18.4	Ca		2 50	-	1	74				nude i
	Observac	iones: SE#	1410	(Frag	Free	125	61				

Figura 58. Registro diario del biomodelo H16.7, del 1 al 7 de noviembre, semana 2.

upo N	9	Control			Rata Nº	+116.7			abpsilib		
ES		oct-nov	AÑO								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	8	14:11	166	8001	45m)	125m	21	20	42	25/	Gerde
	a	1:47	168	9001	35-1	125-	28	14	42	25%	Sahr
	10	1:55	168	gon	350	175	78	164	42	75%	sem
	11	11:14	173	95~1	3001	125	26	16	43	25.1	Sun
	12	11:48	174	9501	youl	175	27	IF	44	25/.	Cm
	13	11:29	175	@5m	yon	125	85	16	44	25/-	20
	14	1 2:15	180	Day	45~	125	25	19	45	257	3
										,	
	Observaci	^	ench	2 1	Egg F	er_1. 4	26				

Figura 59. Registro diario del biomodelo H16.7, del 8 al 14 de noviembre, semana 3.

rupo N	1	Control			Rata Nº	M16.4		ta	abpsilib		
ES		oct-nov	ANO 2016			1			Suministro		
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Alimento (g.)	Observaciones	Resp.
	24	3:49	161			125-1	_		409	25%	Sanders
	25	12:11 pm	168	75mi	5anl	175ml	255	159	429	25%	Sander 5
	26	17:05pm	161	105m1	2011	125mi	275	139	409	25%	5400
	27	1:00m	161	100-11	75-1	125ml	255	159	409	75.1.	Sander
	28	12:10	183	75~1	Sonl	1250)	235	179	469	25%	Sondal.
	24	11:54	183	Son	45001	125~1	259	719	469	25%.	Sardar
	30	11:31	200	75-11	Som	125m1	221	249	509	25%	50rd = 10
	31	11.2	204	800	45-1	12521	279	239	519	25%	Savere
							7158				
							7	2			
								7-2		- Saida	
			1 1 1 1 1 1 1							LANCE TO	
	- 1999							(49)	- 1937 PROP		
	7 1 7		- 1/2 1								
				1 -	F1663:	0	BAR IS			1 1 1 1 1	

Figura 60. Registro diario del biomodelo M16.4, del 24 al 31 de octubre, semana 1.

ervaciones
,
5% 0
5%
25%
5%
5% 5
5%
5%. 8
MAN
2

Figura 61. **Registro** diario del biomodelo M16.4, del 1 al 7 de noviembre, semana 2.

irupo N	9	(on ha)			Rata Nº	M 16.4	1	La	abpsilib		
IES		oct-nov	AÑO					5 Mg 8 10 10 10 10 10 10 10 10 10 10 10 10 10			
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	8	7.38	1438	80m'	45~1	125	36	74	60	25%	Sam
	9	1:50	245	8501	you	125ml	32	23	61	25%	Some
	10	1:58	244	90	35ni	125-1	Lio	71	60	18%	Sent
	11	11:24	257	8000)	4511	125ml	39	23	64	25%	gnis
	12	11:53	255	85ml	40	125~	44	20	56	251	on
	13	11:37	261	Bon	115-27	175ml	33	23	65	25.4	on
	14	12:30	265	75	5000)	125	41	74	60	25%	an
						70.70					
				8							
		-									
	Observaci		nene	2 F	55 Frc.		1.0				

Figura 62. **Registro** diario del biomodelo M16.4, del 8 al 14 de noviembre, semana 3.

o Nº		Control			Rata Nº	MIL.5			abpsilib		
		oct-nov	AÑO				Residuo		Suministro		
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Alimento (g.)	Consumo Alimento (g.)	Alimento (g.)	Observaciones	Resp.
	24	3:54	132	_	_	125 -		-	33	25 %	Sunders
	25	12:18:00	141	95ml	30ml	125 m)	169	17g	35	25%	Sander
	26	17:000	145	loon	25-1	125m)	149	219	36	25%	Sando
	77	1: appn	151	Boml	45001	125ml	169	709	38	25%	Sord
	29	12:14pm	162.	100ml	75m1	125~1	719	179	41	25%	5000
	29	11:58	164	95-1	30m1	1252)	239	185	41	85 %	Sure
	30	11:35	168	95001	3000)	175m	7	199	42	25 %	5und-
	31	11:55	176	90mg	3571	125m	705	229	44	251	Sand
										-	
											-
					-						
	Observaci	iones: 5	rno 1	Es-s	focus	1 330					

Figura 63. **Registro** diario del biomodelo M16.5, del 24 al 31 de octubre, semana 1.

Grupo N	0	Control			Rata Nº	M16-5		1	abpsilib		
MES		60-nov	AÑO								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	1	1:09	1809	95ml	Juste	125m	245	709	45	25%	on
	2	11:59	1849	950	3000)	125m)	269	199	46	257	50rd
	3	17:76	1865	aga una	35-1	125~1	78	189	47	25%	Sur
	4	12:30	194	85-1	4001	125m	27	709	49	25-1	Sorch
	5	1-74	198	10001	25-1	12500)	79	209	2510 g	25%	Sout
	7	11:28	206	95-1	(1001)	125~1	0	Cly	253	25%	San
	7	17:13	203	90-111	35ml	12501	2)	219	519	25%	Sord
							1				
		^	ne ve	-	is Foc						

Figura 64. Registro diario del biomodelo M16.5, del 1 al 7 de noviembre, semana 2.

rupo N	10	Control			Rata Nº	W/6.5		L	abpsilib		
IES		€R-nov	AÑO		16						
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	8	7:54	706	85-1	45~	125~	32	199	SZ	25%	gunt
	9	1:53	209	9001	35m)	125~	33	199	52	25%	Sandy
	10	2:01	209	95-1	3001	125mg	34	1.89	52	25%	Sendi
	11	11:27	214	95m	30-1	1250	32	709	54	75%	Sm
	12	11:59	215.	85ml	U5m1	[257]	35	199	54	25%	Jan
	15	11:35	718	80m	4500	1250	36	169	55	25%	one
	101	12:48	220	Bsr1	40 m	1257)0	199	3)	651-	9
							1				
			- 1								
							10/10/10				
							26.				
	Observaci	iones: ben	Yory "	3 Ees	So Fre	ale	73	3			
	Observaci	iones: ben	very "	3 Ees	So For	als	33	3		-	

Figura 65. **Registro** diario del biomodelo M16.5, del 8 al 14 de noviembre, semana 3.

rupo N	lō.	Control			Rata Nº	M 16.6		La	bpsilib		
ES		oct-nov	AÑO 2016								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	24	3:59	147			125-1	-		379	25%	Sanders
	25	12:24	158	70m1	55m1	125ml	7	379	409	25%	Sandels
	26	12:31	155	190mj	22ml	125-11	23	189	399	25%	gandr
	27	1:38	154	105-11	2011	175ml	21	189	39	25 %	Sendar S
	28	1774	164	9501	3on	125ml	2)	189	41	25%	Sandy
	29	12:06	163	Hobbany	15m1	125-1	22	199	41	75%	Such
	30	11:400	, 165	10901	2071	125 m	275	199	41	28%	Serdov
	31	11:59	164	110-11	15m1	125-1	735	185	41	75%	Sed -
	9.11/2										
		A COLUMN									
	Observac	iones: 500	reve 1	Esas Fa	aug 2	9					

Figura 66. Registro diario del biomodelo M16.6, del 24 al 31 de octubre, semana 1.

irupo N	lō.	Contr	10		Rata Nº	KM 16.	6	L	abpsilib		
NES		₫ -nov	AÑO								
	Dia	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alidento (g.)	Suministro Alimento (g.)	Observaciones	Res
	1	1:06	164	1100	11501	12501	779	149	41	25%	So
	2	12:02	189	700	SSmI	125-01	199	729	42	25%	5000
	3	17:30	194	Boml	tismi	125 -7	759	729	49	25%	Sta
	4	12:30	204	75-1	somi	12501	77	279	51	25%	500
	5	1:50	704.	8001	45m)	125m	30	219	51	25%	sord
	6	11:32	212	85-1	lon!	125-1	29	773	53	25-1.	San
	7	12:26	215	8-1	457	125m)	30	239	54	85%	Snu
									S. S. H. S.		
					i song diseles						
		6-	ne nep	2	Esy.	C C -	70	3			
	Observaci	ones:	me nep		丁)刘	Lucoral	2)			

Figura 67. Registro diario del biomodelo M16.6, del 1 al 7 de noviembre, semana 2.

rupo Nº	2	Cont-			Rata Nº	1416.6			abpsilib		
ES		and-nov	AÑO			Suministro agua	Residuo		Suministro		
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	(ml.)	Alimento (g.)	Consumo Alimento (g.)	Alimento (g.)	Observaciones	Resp.
	9	300	217	85-1	No	1250	33	71	54	25%	50-1
	9	1:57	26	8000	45	125	34	705	34	28%	Sam
	10	7:03	223	45-	30	125~1	35	19	56	25%	an
	11	11:79	231	8541	your	125	36	20	28	25%	Sw
	12	17:12	232	90~1	45-1	125.	36	22	50	25%	Con
	13	11:38	738	8001	Cism	1250	40	(8)	60	25%	ans
	10	11:06	234	85ml	you	125m	43	17	59	25	net
							4				
			1		Faca						

Figura 68. **Registro** diario del biomodelo M16.6, del 8 al 14 de noviembre, semana 3.

Grupo experimental

rupo N	As	Experi	3		Rata Nº	H16.2		L.	abpsalib		
1ES		oct-nov	AÑO								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp
	24	4:09	118			125ml	_		309	25%	Sond
	25	1:040	7,000,000	Boni	45001	125ml	17	139	319	25 1.	Sun
	26	12:50	119	(000)	25-1	125 m)	14	149	309	22.1	Sono
	22	1:30	127	90001	35-1	175001	16	149	329	25 1/.	Sand
	23	12112	-35	95-51	2304	12500	20	- 12		28/5-	Jeac
	28	12.75	133	850)	4001	125~1	1799	159	335	25%	90 ne
	24	17:19	134	8001	45 m1	125-1	189	150	349	25 %	500
	30	12:02	138	75~1	Som	12500	205	199 1419	35	75'	Som
	31	17:24	139	85~1	Lio m/	125-1	219	149	35	25 %	San
							123				
	Observac	iones: 5 A	~~	Esay Fa	palas	259	- 4				
		0				- 0					

Figura 69. Registro diario del biomodelo H16.2, del 24 al 31 de octubre, semana 1.

irupo N	18	EXY			Rata №	4162		L	abpsilib		
IES		oft-nov	AÑO								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	1	1:35	13%	85~	youl	125	27.	13	359	75:/-	unt
	2	12:22	139	957	3001	125-	23.9	129	315	25%	Sanda
	5	1:06	146	857	4001	125m	Zoq	159	379	25%	Sanda
	4	12:43	148	9001	350)	125-1	237	149	379	75%	Sond
	2	2:04	130	9001	3501	25m	Zla	169	389	25%	South
	6	12:05	155	dan	35m)	129m)	828	169	349	25%	Sendi
	7	7:07	153	851	Gans	1522m	719	139	349	751	Supers
		The Mark							3		
1											
	1										
	1						46600				
			_ ~		0 -		,	- 4:			
	Observaci	ones:	as Gen	who (2 Es	ing F.	acelas	5 24	•		

Figura 70. Registro diario del biomodelo H16.2, del 1 al 7 de noviembre, semana 2.

nbo Na		Expori			Rata Nº	H16.2			abpsilib		
s		aft-nov	AÑO						- T. (1)		
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	8	3:70	157	95:01	30	1250	16	189	39	25%	Soul
	9	7:30	150	95m	30-1	125-01	24	185	90	25%	50m
	10	2:14	160	957	3000	7250	27	139	40	25%	Sol
	1)	11/3/1	164	9501	30ml	125	25	159	41	25%	cm
	17	17:50	169	8501	0000	125	74	179	42	25%	-
	18	11:50	168	75	San	125	35	73	LIZ	25-1	2
	14	1:37	168	85	Yorl	175	27	159	42	52%	met
								0			
							1				
											100
	Observaci	ones: Le	~ ~	2 × 500	FICAL	5 7	8	State of the same			

Figura 71. **Registro** diario del biomodelo H16.2, del 8 al 14 de noviembre, semana 3.

Grupo N	10	Experi			Rata Nº	H163		L	abpsilib		
MES		oct-nov	AÑO	149 - 1925							
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	24	416	120	_		125-1	_		30	252	Garde-
	25	1:11	125	85m1	4001	125ml	14	169	31	25%	Sand
	26	17:55	126	domi	35-1	125m1	[8	139	32	25%	Sund
	77	1:34	132	95mi	30ml	125m1	19	139	33	22.4	Sard
	28	12:30	134	90m)	3571	2521	15	184	34	25%	Sand.
	79	12:23	136	90001	3531	12527	24	109	34	75.1	sard.
	30	12:10	138	85m1	40ml	175~1	17	179	35	25%	San
	31	12:30	140	85~	4an 1	125-11	15	145	35	25%	Sand
									Parities	191	
						Pala					
						Town capture					
	Observa	ciones: Sel	mer I	£5-5	FACELA	3 2	54				

Figura 72. Registro diario del biomodelo H16.3, del 24 al 31 de octubre, semana 1.

Grupo Nº		Exper			Rata Nº	H16. 5			abpsilib		
MES		of nov	AÑO								1
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	1	1:45	141	9001	35m1	1750	209	15-1	35	75%	gret
	2	12.73	148	957	your	125m)	199	16-1	37	25%	Sonder
	3	1:11	146	loon	25001	1254	733	14-1	37	7511	500mm
	9	12:47	145	1.08	454	1750	749	1301	76	25%	Scholad
	5	12:00	150	9501	30~1	[25-1]	209	169	38	25%	Sorti
	6	12:00	156	9041	357	1250	219	179	39	25%	5000
		1.01	130	10),	(0,-1	16 3.21	209	149	31	0/.	Sorti
							1				
			_	0	+			711			
	Observaci	ones:	" Den	20 6	1500	5 fo	colo	5:24			

Figura 73. **Registro** diario del biomodelo H16.3, del 1 al 7 de noviembre, semana 2.

ipo N	la .	EXPOS			Rata №	H163		La	bpsilib		
s	Día	oct-nov Hora	AÑO Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua	Residuo	Consumo Alimento (g.)	Suministro	Observaciones	Resp.
	8	719)	153	95	30	(ml.)	Alimento (g.)	129	Alimento (g.)	35%	Sin
	a	7:33	1.56	90	75	125	23	159	34	25%	gon
	10	7:17	160	800	CIS	125	72	179	40	85%	Sant
	11	11:47	164	95-4	LIO	125	74	163	41	25%	Care
	11	12:50	167	80-1	(15-7)	125	26	15 9	47	75%	Com
	13	12:01	163	75-1	50m	115	74	139	41	52.1	2
	14	1:59	165	8001	450	175	75	169	41	25%	900
				In the second							
			×	0	Eses F	1	72				

Figura 74. **Registro** diario del biomodelo H16.3, del 8 al 14 de noviembre, semana 3.

Grupo M	10	EXPEN			Rata Nº	H16.4		L	abpsilib		
MES		oct-nov	ANO 2016								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	24	4:25	139		-	125	-	_	359	251/	igande
	25	1:16	130	100ml	25m1	125	21	149	339	35%	Sandes
	26	1:01	131	9501	3000)	125	18	15.5	339	25%	Sords -
	22	1:39	136	9521	3001	125	18	159	349	25 %	Som
	20	1734	138	9001	35m1	125	20	149	359	25 %	gard
	79	17:58	139	95-1	3001	125-1	21	149	355	25%	5-3
	30	17:18	144	gom 1	35~1	12500	18	179	369	25/-	Sord.
	31	17:35	146_	90m1	35001	125-1	71 -	159	379	25%	Solar
	31	17:484	115	0.71	15-	12501	29	85		25%	7
									1 1		-
										1	
							0 0				
	Observaci	iones: 5 E	more		Fry fee	ruhs	25	9			

Figura 75. **Registro** diario del biomodelo H16.4, del 24 al 31 de octubre, semana 1.

rupo №		EXPL			Rata Nº	H16.4		L	abpsilib		
ES		get-nov	AÑO								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	1	281	1459	95-1	Bunj	125-	239	149	365	75%	Crost
	2	12:37	1499	900	35~1	125-1	239	1319	379	95%	gard-s
	3	1:16	1500	9500)	300)	125	235	149	389	75%	Sondars
	9	12:51	1579	95-1	30m1	1250	739	159	364	75%	Screms
	5	2:15	155	Loom	75-1	12501	239	139	199	25%	Sarly
-	6	12,12	155	1001	25-1	125-1	239	169	39	25%	Sarders
-	7	1:34	154	90-1	35-11	12527	23	169	39	28%	Sensu
-											
-											
-											
-											
-											
-							13 40			DE STATE	
L		-	nono	2 (Ses Fr	(1 0	20			

Figura 76. **Registro** diario del biomodelo H16.4, del 1 al 7 de noviembre, semana 2.

upo N	ę	Eto.			Rata Nº	H/6.4		L	abpsilib		
ES		del-nov	AÑO						Suministro		
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Alimento (g.)	Observaciones	Resp.
	8	3:32	155	95-11	30m1	125	25	145	34	25%	SUNY
	9	7:34	157	100001	25~	1250	23	169	34	25%	300
	10	2:19	155	05-1	Zon	1250)	34	55	39	23%	zen
	11	11:49	128	[on]	25ml	125~1	78	119	40	25%	Sus
	12	12:56	158	95~1	3001	175	77	139	40	25%	and
	13	12:03	156	751	San	175-	77	135	40	25%	200
	14	2:15	158	85%	40~7	179	24	169	40	52%	Col
		444									
				N.C.	100	22	,			,	THE ST
	Observaci	ones:	are 'S	55	FEC: 15	5 66					

Figura 77. **Registro** diario del biomodelo H16.3, del 8 al 14 de noviembre, semana 3.

ıро N	9	Expens			Rata №	M16. 8		L	abpsilib		
s		oct-nov	ANO 2016								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	24	4:28	160	_	-	125m	_	_	409	25%	Salas
	25	1:27	164	Bom	4501	12501	20	209	419	25%	gandres
	26	1:07	171	75ml	San)	125~1	22	199	439	75%	sand.'S
	27	1:46	173	Bomi	450	125n1	-	209 -	43 9	25%	gent
	29	12:40	1843	00ml	45m	12501	22	719	469	25%	Scrider
	29	12:34	185	85-1	Lon	125-1	28	189	469	25.1.	Senda-)
	30	11:28	191	7500	Soml	12541	27	199	489	25%	Same
	31	12:44	195	8001	45-7	125m	29	199	49	25%	Save
									S. S. Line		
						02010269					
					E	100					

Figura 78. Registro diario del biomodelo M16.1, del 24 al 31 de octubre, semana 1.

Grupo N	le .	ELPOI			Rata Nº	M16.1		L	abpsilib		
MES		oct-nov	AÑO								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	١	7:75	196	80m	451	1250)	13391	16 9	49	25%	Synda.
	7	12:40	7045	80-11	lismi	1257	29	709	51	75%	Sent
	3	1:20	2052	85Ml	401	1750	329	199	51	75%	Sonda
	4	17:55	7094	750	Som	175-1	379	199	52	75%	Sent
	5	2:20	7135	8ans	Usml	125 -	1314	295	53	75%	Scrot
	6	12:15	7185	75-1	Some	125-1	31	729		25%	Sand
	7	12:47	2219	757	50ml	1750	36	199	55	25%	sent
					*						
			mana		Esos Fo						

Figura 79. Registro diario del biomodelo M16.1, del 1 al 7 de noviembre, semana 2.

irupo N	lō.	Exper.			Rata №	M/6-1		L	abpsilib		
MES		oct-nov	AÑO								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	8	3:34	224A	7001	55	125	34	21	56	25%	Souther
	0	2:45	229	Sanj	45	125	34	72	57	25%	7
	10	272	228	95-1	30	175m	38	19	57	25%	San
	11	1697	236	gan	45.1	125r	36	21	59	25/.	Com
	12	12:54	239	75-	Som)	115	139	70	60	25%	in
	13	12:08	736	55m	ton	125	45	159	59	251	Cer
	14	2:36	735	75-1	500	125	42	179	59	24	Sec
							1		*		
									100		
			-							William Street	
			111111					A SECTION AND A			
				The sage		THE REAL PROPERTY.		N-M			
										1	
	Observac	51-	10 3	EC-12	colo 3	2					
	Observac	iones: / (N). ')	1					

Figura 80. Registro diario del biomodelo M16.1, del 8 al 14 de noviembre, semana 3.

Grupo M	10	Experim			Rata Nº	M16.2		L	abpsilib		
MES		oct-nov	Año Zolo								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	29	4:33	143	-		125	-	_	369	25%	Sundari
	75	1:32	151	20m)	45ml	125-1	179	199	389	257.	gandes
	26	1:12	159	9001	35001	125m	20	189	400	25 %	Sanda
	27	1:49	163	80n1	45-1	12501	20	209	419	25%	Send
	78	12:45	168	75m	Sanl	125-1	23	109	425	25.1	Sand
	79	12:38	174	804)	45 ml	125~1	28,5	709	4	85%	50 4 15
	30	12:35	177	Boml	45-11	125m)	26	100 194	44	25.1	Sarcher
	31	12:49	183	Bonl	45~1	125m	24	239	46	25%	Goras
		-					EMILE SE				
				1 -		0					
	Observac	iones: 5 Pr	news	1 t5-s	facula	5 5	14				

Figura 81. Registro diario del biomodelo M16.2, del 24 al 31 de octubre, semana 1.

irupo N	lō.	Ex1-			Rata Nº	m/6.2			abpsilib		
MES		6gt-nov	AÑO								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	1	2.34	185	75~	5000	125~1	235	239	469	251	and
	2	1244	190	8001	45-1	125~	759	219	485	25%	Sondars
	3	1:25	194	95-1	hom	125~1	289	709	499	75:	Soupers
	9	12:58	196	Bamı	45-1	1851	799	209	499	25%	Serdar5
	5	2:24	145	9001	3501	125 m	79	Zog	499	25%	Sond-1
	6	12:23	202	75mml	9001	1254	29	200	519	25%	Sarker
	7	1:59	703	75-11	Somi	125m	32	199	519	25%	Sad
								3	, ,		
							7,000				
	Observaci	^	- 2	8.	For	1	33				

Figura 82. **Registro** diario del biomodelo M16.2, del 1 al 7 de noviembre, semana 2.

ıpo N	2	EXPOR			Rata Nº	mK.C		L	abpsilib		
s		oct-nov	AÑO								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	Q ₀	3:43	704	Bang	4 Sury	125m	24	229	52	28%	Som
	d	2:40	709	gom	350	125-7	78	749	57	25%	am
	10	2.85	206	95-1	3anl	125-	33	199	52	25%	Sents
	il	11.49	209	85ml	Lion	1250	33	199	57	251	Cree
	12	1.02	20%	85~1	honl	125	36	165	52	25%	012
	13	17:11	707	750	50-1	175	34	139	50	75%	cen
	14	3:00	208	00-1	49-7	175	33	199	50	0%	ces
							1		7		
					Page 191					1 2 3 3 7	18.
								The same			
	Observacio		mine	3 F5	-s Fee	9× 70	54				
	Observaci	ones:	7.4	/ //							

Figura 83. Registro diario del biomodelo M16.2, del 8 al 14 de noviembre, semana 3.

ıpo N	0	E-10-6			Rata Nº	M16.3			abpsilib		
5		oct-nov	AÑO			Suministro agua	Residuo		Suministro		
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	(ml.)	Alimento (g.)	Consumo Alimento (g.)	Alimento (g.)	Observaciones	Resp.
	24	4:37	140	_	-	125	_	_	355	25%.	gorda 15
	25	1.37	145	95ml	300)	125	19	16 g	369	25%	Sand *
	26	1:16	150	9001	3501	125ml	18	185	389	25 1/5	Same
	27	1:53	158	9001	3501	1751	70	189	409	25%	Sendoss
	28	12:49	163	850	you	12571	21	199	419	75 1	Sandri'
	79	17:42	174	90m)	35001	125~1	709	219	449	25' 1.	Soretal
	30	12.41	74	75-1	Son	128/1	24	209	449	25.1.	Scart
	31	12:52	180	75m1	Son	125 m	125	279	459	75%	Surv
							. '				
				1 1 1 1 1 1							
										1	
							25000				
	Observa	riones: Sa	rene 1	Esas	Feeding	- 3	39				
	Observac	ciones: 50	rener 1	Esas	Feelog	- 3	3 9				

Figura 84. Registro diario del biomodelo M16.3, del 24 al 31 de octubre, semana 1.

rupo N	9	Experim			Rata Nº	M16.3		I.	abpsitib		
IES		oft-nov	AÑO								
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	Suministro agua (ml.)	Residuo Alimento (g.)	Consumo Alimento (g.)	Suministro Alimento (g.)	Observaciones	Resp.
	1	2:35	183	60	65~1	125-1	24	219	46	75%	an
	2	12:47	188	7521	Soml	1750	27	199	47	25%	Sonda
	3	1:30	189	800	45001	129m)	77	709	47	754	Sondan)
	4	12:02	199	701	551	1250	25	229	50	25%	Serdal S
	S	12:27	703	9001	35-1	125-1	29	219	51	75%	Sandar
	6	12:36	707	80ml	(15m)	175-27	31	209	52	25%	Sandis
	7	2:11	(11	gan1	450	12501	30	229	53	25%	sanders
											1
			100 8118								
									New York		
										(CS (C) (C)	
							72				
		2	V. Y. Y.	-	C			26			
	Observaci	ones:)P~	200		£99 F	-69100	•	50		-	

Figura 85. Registro diario del biomodelo M16.3, del 1 al 7 de noviembre, semana 2.

upo N	9	EXP			Rata Nº	An 16.3		La	abpsilib		
ES		off-nov	AÑO			Suministro agua	Residuo		Suministro		
	Día	Hora	Peso Corporal	Residuo agua (ml)	Consumo agua (ml.)	(ml.)	Alimento (g.)	Consumo Alimento (g.)	Alimento (g.)	Observaciones	Resp.
	8	3:47	7.13	900	35~1	128	26-	74	53	25%	Sem
	a	v'sc	718	800	4571	175m	28	75	99	1,53	Sm
	10	7:28	220	Son	491	125m	35	70	55	25%	Sar
	11	11.56	229	80-1	4541	1252	35	20	57	25%	do
	17	1:05	777	65	6001	1750	36	71	57	E5%	un
	13	17:14	274	2001	55m1	175	42	15	36	251	an
	14	322	275	75-7	50-27	175	353	11	56	25%	Sur

Figura 84. **Registro** diario del biomodelo M16.3, del 8 al 14 de noviembre, semana 3.